Cytochalasin D Promotes Osteogenic Differentiation of MC3T3-E1 Cells via p38-MAPK Signaling Pathway.

Curr Mol Med

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, China.

Published: October 2020

Background: Bone defect caused by trauma, tumor resection, infection or congenital malformation is a common clinical disease. Bone tissue engineering is regarded as a promising way of bone defect reconstruction. Thus, agents that can promote osteogenesis have received great attention. Cytochalasin D (Cyto D), a metabolite derived from molds, proves to be able to modify actin, reorganize cytoskeleton, and then promote the osteogenic differentiation.

Objective: The purpose of this study was to explore the effect and mechanism of Cyto D on osteogenic differentiation of mouse pre-osteoblast MC3T3-E1 cells.

Methods: The optimum concentration of Cyto D was explored. The osteogenic differentiation of MC3T3-E1 cells induced by Cyto D was assessed by alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, western blotting and quantitative real-time polymerase chain reaction (RT-qPCR). In addition, a specific pathway inhibitor was utilized to explore whether MAPK pathways were involved in this process.

Results: The results showed that the optimized concentration of action was 10-2µg/ml. The expression of Runx2, OCN and OSX was up-regulated by the supplement of Cyto D. ALP activity, calcium deposition, and phosphorylation level of p38 protein were also improved. Inhibition of the pathway significantly reduced the activation of p38, and the expression of osteogenic-related genes.

Conclusion: Cyto D can promote the osteogenic differentiation of MC3T3 cells via the p38-MAPK signaling pathway, but not the ERK1/2 or JNK, and it is a potential agent to improve the osteogenesis of MC3T3 cells.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566524019666191007104816DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
differentiation mc3t3-e1
8
mc3t3-e1 cells
8
cells p38-mapk
8
p38-mapk signaling
8
signaling pathway
8
bone defect
8
promote osteogenic
8
mc3t3 cells
8
cyto
6

Similar Publications

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Bone formation is a complex multi-factor process of bone defect healing. Oxidative stress (OS) is predisposed to induce regulatory cell death (RCD), such as ferroptosis. At present, the antioxidant effects of Crocin on erastin induced oxidative damage were studied.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!