Block copolymer matrices are often used to control nanoparticle (NP) dispersion behavior, but the effects of diblock domain interfaces on particle-particle interactions have not been well characterized. In this paper, polymer field theoretic simulations are used to quantify interactions between both bare and grafted spherical NPs in microphase-separated A-B diblock copolymers. It is shown that for bare NPs that have an athermal interaction with and a diameter similar to the B domain, the presence of an A-B interface leads to an effective interaction between the particles with multiple minima separated by a free energy barrier. It is further shown that these effects primarily result from chain stretching and compression near the A-B interface induced by particle-particle interactions as opposed to increases in A-B contact at the interfaces. Grafted chains largely prevent these effects and reduce particle-particle interaction strength. When confined by diblock domain interfaces, grafted chains have a reduced extension compared to what is expected for de-wetted brush chains, as commonly described in homopolymer results. Finally, these studies indicate a new route toward linking spherical NPs in a controlled fashion, allowing for tunable plasmonic properties in the case of metallic NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b05771DOI Listing

Publication Analysis

Top Keywords

field theoretic
8
diblock domain
8
domain interfaces
8
particle-particle interactions
8
spherical nps
8
a-b interface
8
interfaces grafted
8
grafted chains
8
equilibrium field
4
theoretic study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!