Developing efficient and low-cost multifunctional electrocatalysts is important for electrochemical devices. In this work, a cost-effective Pt/NiO composite with very limited Pt loading (from 0.5 to 3%) was controllably synthesized through facile hydrothermal procedures. The composite demonstrated the improved catalytic performance as applied to the nonaqueous Li-O batteries and the alkaline fuel cells. Regarding the alkaline fuel cells, 1% Pt/NiO composite gave rise to the best Pt distribution and thus exhibited the optimized electrochemical conductivity and properties as suggested by the significantly improved electrochemical reversibility. Meanwhile, the demonstrated 1% Pt/NiO composite presented high catalytic capability as electrode for Li-O batteries, which allowed for much improved capacity utilization, high cycling stability, high initial capacity (2329 mAh/g), and no obvious voltage drop during cycling. Such multiple advantages of prepared composite electrode material offer new prospects and application as multifunctional electrocatalysts for both Li-O batteries and alkaline fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b11623 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!