Molecular mechanisms of 33-mer gliadin peptide oligomerisation.

Phys Chem Chem Phys

Grupo de Biofísica, Instituto de Física del Sur, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.

Published: October 2019

The proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a β structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp02338kDOI Listing

Publication Analysis

Top Keywords

33-mer
9
33-mer gliadin
8
gliadin peptide
8
gluten-related disorders
8
immune response
8
structural transformation
8
transformation 33-mer
8
oligomerisation
5
molecular mechanisms
4
mechanisms 33-mer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!