In this study, we introduce a stochastic method to delineate the mineral effective surface area (ESA) evolution during a recycling reactive flow-through transport experiment on a sandstone under geologic reservoir conditions, with a focus on the dissolution of its dolomite cement, CaMgFe(CO). CO-enriched brine was circulated through this sandstone specimen for 137 cycles (∼270 h) to examine the evolution of in situ hydraulic properties and CO-enriched brine-dolomite geochemical reactions. The bulk permeability of the sandstone specimen decreased from 356 mD before the reaction to 139 mD after the reaction, while porosity increased from 21.9 to 23.2% due to a solid volume loss of 0.25 mL. Chemical analyses on experimental effluents during the first cycle yielded a dolomite reactivity of ∼2.45 mmol m s, a corresponding sample-averaged ESA of ∼8.86 × 10 m/g, and an ESA coefficient of 1.36 × 10, indicating limited participation of the physically exposed mineral surface area. As the dissolution reaction progressed, the ESA is observed to first increase and then decrease. This change in ESA can be qualitatively reproduced employing scanning electron microscopy-image-based stochastic analyses on dolomite dissolution. These results provide a new approach to analyze and upscale the ESA during geochemical reactions, which are involved in a wide range of geoengineering operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b04441 | DOI Listing |
Sci Total Environ
January 2025
Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:
The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
Composite materials based on diatomite (DT) with the addition of biochar (BC), dolomite (DL), and bentonite (BN) were developed. The effect of chemical modification on the chemical structure of the resulting composites was investigated, and their influence on heavy metal immobilization and the ecotoxicity of post-flotation sediments was evaluated. It was demonstrated that the chemical modifications resulted in notable alterations to the chemical properties of the composites compared to pure DT and mixtures of DT with BC, DL, and BN.
View Article and Find Full Text PDFSci Rep
January 2025
Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria.
The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!