A transient cytosolic delivery system for accurate Cas9 ribonucleoprotein is a key factor for target specificity of the CRIPSR/Cas9 toolkit. Owing to the large size of the Cas9 protein and a long negative strand RNA, the development of the delivery system is still a major challenge. Here, a size-controlled lipopeptide-based nanosome system is reported, derived from the blood-brain barrier-permeable dNP2 peptide which is capable of delivering a hyperaccurate Cas9 ribonucleoprotein complex (HypaRNP) into human cells for gene editing. Each nanosome is capable of encapsulating and delivering ≈2 HypaRNP molecules into the cytoplasm, followed by nuclear localization at 4 h post-treatment without significant cytotoxicity. The HypaRNP thus efficiently enacts endogenous eGFP silencing and editing in human embryonic kidney cells (up to 27.6%) and glioblastoma (up to 19.7% frequency of modification). The lipopeptide-based nanosome system shows superior delivery efficiency, high controllability, and simplicity, thus providing biocompatibility and versatile platform approach for CRISPR-mediated transient gene editing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903172DOI Listing

Publication Analysis

Top Keywords

gene editing
12
delivery system
8
cas9 ribonucleoprotein
8
lipopeptide-based nanosome
8
nanosome system
8
lipopeptide-based nanosome-mediated
4
delivery
4
nanosome-mediated delivery
4
delivery hyperaccurate
4
hyperaccurate crispr/cas9
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!