When molecularly imprinted fluorescent polymers (MIFPs) are prepared by the doping method (d-MIFPs), the fluorescent nanoparticles are quenched and passivated during the polymerization and elution process, and their detection sensitivity would be reduced. In this study, to overcome this drawback, MIFPs were synthesized by post-imprinting modification based on multilevel mesoporous structured silica. Briefly, multilevel mesoporous-structured BPA-imprinted polymers (MIPs) were prepared at first, and then, CdTe quantum dots were anchored onto the large pores of the MIPs to form p-MIFPs. Due to the well-maintained fluorescence intensity and low background, the sensitivity of the p-MIFPs was two orders of magnitude higher than that of the d-MIFPs. The F/F- 1 of p-MIFPs was linear with BPA in the range of 0.005 to 4.0 μM with an LOD of 0.57 nM. Furthermore, post-imprinting modification was adopted to achieve ratiometric fluorescent MIPs (p-r-MIFPs) by simultaneously anchoring carbon dots and quantum dots onto the MIPs. The p-MIFPs and p-r-MIFPs were successfully applied to determine BPA in water samples with average recoveries ranging from 96.4% to 102.0% and an RSD below 4.1%. The results prove that post-imprinting modification is an effective method to construct MIFPs with conspicuous sensitivity, and multilevel mesoporous silica is an ideal matrix for the post-imprinting modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an01503e | DOI Listing |
Int J Biol Macromol
December 2024
Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
Anal Bioanal Chem
December 2024
Innovation and Commercialization Division, Kobe University, 1-1, Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
Quantifying glycated albumin (GA) levels in the blood is crucial for diagnosing diabetes because they strongly correlate with blood glucose concentration. In this study, a biotic/abiotic sandwich assay was developed for the facile, rapid, and susceptible detection of human serum albumin (HSA) and GA. The proposed sandwich detection system was assembled using a combination of two synthetic polymer receptors and natural antibodies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:
Inspired by protein post-translational modification (PTM), post-imprinting modification (PIM) has been proposed and developed to prepare novel molecularly imprinted polymers (MIPs), which are similar to functionalized biosynthetic proteins. The PIM involves site-directed modifications in the imprinted cavity of the MIP, such as introducing high-affinity binding sites and introducing fluorescent signal molecules. This modification makes the MIP further functionalized and improves the shortcomings of general molecular imprinting, such as single function, low selectivity, low sensitivity, and inability to fully restore the complex function of natural antibodies.
View Article and Find Full Text PDFNanoscale
September 2023
Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
In this study, we prepared molecularly imprinted polymer nanogels with good affinity for the Fc domain of immunoglobulin G (IgG) using 4-(2-methacrylamidoethylaminomethyl) phenylboronic acid as a modifiable functional monomer for post-imprinting in-cavity modification of a fluorescent dye (F-Fc-MIP-NGs). A novel nanogel-based biotic/abiotic hybrid sandwich detection system for porcine serum albumin (PSA) was developed using F-Fc-MIP-NGs as an alternative to a secondary antibody for fluorescence detection and another molecularly imprinted polymer nanogel capable of recognizing PSA (PSA-MIP-NGs) as a capturing artificial antibody, along with a natural antibody toward PSA (Anti-PSA) that was used as a primary antibody. After incubation of PSA and Anti-PSA with F-Fc-MIP-NGs, the PSA/Anti-PSA/F-Fc-MIP-NGs complex was captured by immobilized PSA-MIP-NGs for fluorescence measurements.
View Article and Find Full Text PDFJ Mater Chem B
February 2023
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!