Deep neural networks usually require large labeled datasets to construct accurate models; however, in many real-world scenarios, such as medical image segmentation, labelling data is a time-consuming and costly human (expert) intelligent task. Semi-supervised methods leverage this issue by making use of a small labeled dataset and a larger set of unlabeled data. In this article, we present a flexible framework for semi-supervised learning that combines the power of supervised methods that learn feature representations using state-of-the-art deep convolutional neural networks with the deep embedded clustering algorithm that assigns data points to clusters based on their probability distributions and feature representations learned by the networks. Our proposed semi-supervised learning algorithm based on deep embedded clustering (SSLDEC) learns feature representations via iterations by alternatively using labeled and unlabeled data points and computing target distributions from predictions. During this iterative procedure the algorithm uses labeled samples to keep the model consistent and tuned with labeling, as it simultaneously learns to improve feature representation and predictions. SSLDEC requires few hyper-parameters and thus does not need large labeled validation sets, which addresses one of the main limitations of many semi-supervised learning algorithms. It is also flexible and can be used with many state-of-the-art deep neural network configurations for image classification and segmentation tasks. To this end, we implemented and tested our approach on benchmark image classification tasks as well as in a challenging medical image segmentation scenario. In benchmark classification tasks, SSLDEC outperformed several state-of-the-art semi-supervised learning methods, achieving 0.46% error on MNIST with 1000 labeled points, and 4.43% error on SVHN with 500 labeled points. In the iso-intense infant brain MRI tissue segmentation task, we implemented SSLDEC on a 3D densely connected fully convolutional neural network where we achieved significant improvement over supervised-only training as well as a semi-supervised method based on pseudo-labelling. Our results show that SSLDEC can be effectively used to reduce the need for costly expert annotations, enhancing applications such as automatic medical image segmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777718 | PMC |
http://dx.doi.org/10.1109/ACCESS.2019.2891970 | DOI Listing |
J Neurophysiol
February 2025
Neuroscience Program in Psychology, The University of Tennessee, Knoxville, Tennessee, United States.
Buprenorphine is an opioid approved for medication-assisted treatment of opioid use disorder. Used off-label, buprenorphine has been reported to contribute to the clinical management of anxiety. Although human anxiety is a highly prevalent disorder, anxiety is a latent construct that cannot be directly measured.
View Article and Find Full Text PDFTomography
December 2024
Department of Computer Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Türkiye.
Unlabelled: Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.
Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).
J Imaging
January 2025
Department of Computer Science, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
The safety and efficiency of assembly lines are critical to manufacturing, but human supervisors cannot oversee all activities simultaneously. This study addresses this challenge by performing a comparative study to construct an initial real-time, semi-supervised temporal action recognition setup for monitoring worker actions on assembly lines. Various feature extractors and localization models were benchmarked using a new assembly dataset, with the I3D model achieving an average mAP@IoU=0.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
Atrial fibrillation (AF) is the most common persistent arrhythmia, and it is crucial to develop generalizable automatic AF detection methods. However, supervised AF detection is often limited in performance due to the difficulty in obtaining labeled data. To address the gap between limited labeled data and the requirements for model robustness and generalization in single-lead ECG AF detection, we proposed a semi-supervised contrastive learning method named MLMCL for AF detection.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
School of Computer Science and Engineering, Sun-Yat sen University, Guanghzou 510006, China.
The consistency regularization method is a widely used semi-supervised method that uses regularization terms constructed from unlabeled data to improve model performance. Poor-quality target predictions in regularization terms produce noisy gradient flows during training, resulting in a degradation in model performance. Recent semi-supervised methods usually filter out low-confidence target predictions to alleviate this problem, but also prevent the model from learning features from unlabeled data in low-confidence regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!