The potential impact of TiO and Fe incorporated TiO nanoparticles at the organelle level has been reported. The toxicity of the samples on mitochondria isolated from chicken liver tissue has been examined through mitochondrial swelling, membrane fluidity, ROS generation capacity, and activity of complex II. The toxic effect of TiO was prevented by incorporating Fe into the TiO matrix at different concentrations. The activity of the succinate dehydrogenase enzyme complex was affected and permeabilization of the mitochondrial inner membrane to H and K and its alteration in membrane fluidity at 100 μg mL of nano-TiO dosage were investigated, which showed significant changes in the anisotropy of DPH-labeled mitochondria. Fe incorporation into the TiO matrix makes it more biocompatible by changing its structure and morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764469PMC
http://dx.doi.org/10.1039/c9tx00143cDOI Listing

Publication Analysis

Top Keywords

membrane fluidity
12
mitochondrial swelling
8
swelling membrane
8
fluidity ros
8
tio matrix
8
tio
5
study mitochondrial
4
membrane
4
ros production
4
production induced
4

Similar Publications

Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen.

Cell Chem Biol

December 2024

Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging.

View Article and Find Full Text PDF

Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.

Membranes (Basel)

December 2024

Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.

Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.

View Article and Find Full Text PDF

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.

View Article and Find Full Text PDF

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.

View Article and Find Full Text PDF

Effects of Melatonin Administration on Physical Performance and Biochemical Responses Following Exhaustive Treadmill Exercise.

Curr Issues Mol Biol

November 2024

Faculty of Health Sciences, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca Km. 299, 50830 Villanueva de Gállego, Zaragoza, Spain.

Exercise, despite being a beneficial activity for health, can also be a source of oxidative imbalance, which can lead to a decrease in performance. Furthermore, melatonin is an endogenous molecule that may counteract exercise-induced oxidative stress. The aim of this study was to evaluate the potential ergogenic and antioxidant capacity of melatonin administered for a maximal effort test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!