Perfluorooctane sulfonate (PFOS), a kind of organic pollutant widely found in the environment and biota, could alter normal brain development and produce cognitive dysfunction. For the past years, the neurotoxic effects of PFOS have been shown. Recent studies have proven that PFOS can induce neuronal apoptosis and cause neurotoxicity, but the regulatory proteins referred to the process have not been clarified. In this study, PC12 cells were used to investigate the changes of the expression of apoptosis-related proteins, forkhead box O3 (FoxO3a) and pro-apoptotic Bcl-2 proteins. We detected that the levels of cleaved caspase-3 and cleaved PARP were up-regulated obviously in PFOS-treated PC12 cells by using Western blotting, and that the apoptotic rate of PC12 cells was increased significantly by using flow cytometry, verifying that PFOS could induce neuronal apoptosis. Western blot analysis and immunofluorescence revealed obvious up-regulation of the expression of FoxO3a and proapoptotic Bcl-2 proteins. In addition, knockdown of FoxO3a gene inhibited Bim expression and apoptosis. According to the data, we believe that FoxO3a may play a crucial role in PFOS-induced neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.2131/jts.44.657DOI Listing

Publication Analysis

Top Keywords

pc12 cells
16
bcl-2 proteins
12
proapoptotic bcl-2
8
pfos induce
8
induce neuronal
8
neuronal apoptosis
8
foxo3a
5
proteins
5
perfluorooctane sulfonate
4
sulfonate induces
4

Similar Publications

Sympathetic nerves regulate nearly all human organs. Their peripheral nerves are present in tumor tissue. Activation of the sympathetic nervous system promotes malignant transformation in several cancers.

View Article and Find Full Text PDF

Nerve growth factor loaded hypotonic eye drops for corneal nerve repair.

J Control Release

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Neurotrophic keratopathy is a degenerative disease caused by corneal nerve damage, leading to corneal ulceration. Recombinant human nerve growth factor (rhNGF) was approved for neurotrophic keratitis therapy; however, the excipients of the eye drops are not optimized for its controlled release. To this aim, we introduce the hypotonic hydrogel PF127 as an excipient for rhNGF in eye drops.

View Article and Find Full Text PDF

circLOC375190 promotes autophagy through modulation of the mTORC1/TFEB axis in acute ischemic stroke-induced neurological injury.

Clinics (Sao Paulo)

January 2025

Department of Neurology, Daqing Oilfield General Hospital, Daqing City, Heilongjiang Province, China. Electronic address:

Objective: The authors explored differentially expressed circRNAs in Acute Ischemic Stroke (AIS) and revealed the role and potential downstream molecular mechanisms of circLOC375190.

Methods: circLOC375190 expression was modulated by lentiviral injection in the brain of transient Middle Cerebral Artery Occlusion (tMCAO) mice. Neurological dysfunction was assessed, as well as infarction size, histopathological changes, and neuronal apoptosis in tMCAO mice.

View Article and Find Full Text PDF

Controlins I-X, Resin Glycosides from the Seeds of and Their Biological Activities.

J Nat Prod

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.

Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.

View Article and Find Full Text PDF

In this Highlights article, we present insights into the use of simple cell lines in neuroinflammation research, highlighting key findings from our recent investigations. Simple cell lines, including HEK, PC12, SHSY5Y, and N2a cells, provide valuable insights into critical signaling pathways and hidden facets of the neuroinflammatory landscape. Focusing on specific outcomes, including the impact of interleukin-6 (IL-6) and acid-sensing ion channels (ASIC1a), the study sheds light on neuroinflammatory processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!