Neuronal O-GlcNAcylation Improves Cognitive Function in the Aged Mouse Brain.

Curr Biol

Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA. Electronic address:

Published: October 2019

Mounting evidence in animal models indicates potential for rejuvenation of cellular and cognitive functions in the aging brain. However, the ability to utilize this potential is predicated on identifying molecular targets that reverse the effects of aging in vulnerable regions of the brain, such as the hippocampus. The dynamic post-translational modification O-linked N-Acetylglucosamine (O-GlcNAc) has emerged as an attractive target for regulating aging-specific synaptic alterations as well as neurodegeneration. While speculation exists about the role of O-GlcNAc in neurodegenerative conditions, such as Alzheimer's disease, its role in physiological brain aging remains largely unexplored. Here, we report that countering age-related decreased O-GlcNAc transferase (OGT) expression and O-GlcNAcylation ameliorates cognitive impairments in aged mice. Mimicking an aged condition in young adults by abrogating OGT, using a temporally controlled neuron-specific conditional knockout mouse model, recapitulated cellular and cognitive features of brain aging. Conversely, overexpressing OGT in mature hippocampal neurons using a viral-mediated approach enhanced associative fear memory in young adult mice. Excitingly, in aged mice overexpressing neuronal OGT in the aged hippocampus rescued in part age-related impairments in spatial learning and memory as well as associative fear memory. Our data identify O-GlcNAcylaton as a key molecular mediator promoting cognitive rejuvenation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199460PMC
http://dx.doi.org/10.1016/j.cub.2019.08.003DOI Listing

Publication Analysis

Top Keywords

cellular cognitive
8
brain aging
8
aged mice
8
associative fear
8
fear memory
8
cognitive
5
aged
5
brain
5
neuronal o-glcnacylation
4
o-glcnacylation improves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!