Orofacial Movements Involve Parallel Corticobulbar Projections from Motor Cortex to Trigeminal Premotor Nuclei.

Neuron

Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address:

Published: November 2019

How do neurons in orofacial motor cortex (MCtx) orchestrate behaviors? We show that focal activation of MCtx corticobulbar neurons evokes behaviorally relevant concurrent movements of the forelimb, jaw, nose, and vibrissae. The projections from different locations in MCtx form gradients of boutons across premotor nuclei spinal trigeminal pars oralis (SpVO) and interpolaris rostralis (SpVIr). Furthermore, retrograde viral tracing from muscles that control orofacial actions shows that these premotor nuclei segregate their outputs. In the most dramatic case, both SpVO and SpVIr are premotor to forelimb and vibrissa muscles, while only SpVO is premotor to jaw muscles. Functional confirmation of the superimposed control by MCtx was obtained through selective optogenetic activation of corticobulbar neurons on the basis of their preferential projections to SpVO versus SpVIr. We conclude that neighboring projection neurons in orofacial MCtx form parallel pathways to distinct pools of trigeminal premotor neurons that coordinate motor actions into a behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962749PMC
http://dx.doi.org/10.1016/j.neuron.2019.08.032DOI Listing

Publication Analysis

Top Keywords

premotor nuclei
12
motor cortex
8
trigeminal premotor
8
neurons orofacial
8
corticobulbar neurons
8
mctx form
8
premotor
6
neurons
5
mctx
5
orofacial
4

Similar Publications

Background: The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear.

Methods: We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD.

View Article and Find Full Text PDF

Non-sensory thalamic nuclei interact with the cortex through thalamocortical and cortico-basal ganglia-thalamocortical loops. Reciprocal connections between the mediodorsal thalamus (MD) and the prefrontal cortex are particularly important in cognition, while the reciprocal connections of the ventromedial (VM), ventral anterior (VA), and ventrolateral (VL) thalamus with the prefrontal and motor cortex are necessary for sensorimotor information processing. However, limited and often oversimplified understanding of the connectivity of the MD, VA, and VL nuclei in primates have hampered development of accurate models that explain their contribution to cognitive and sensorimotor functions.

View Article and Find Full Text PDF

Engaging dystonia networks with subthalamic stimulation.

medRxiv

May 2024

Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.

Article Synopsis
  • * A study of 58 patients showed that different stimulation sites within STN are linked to specific improvements: cervical dystonia improved with stimulation of the ventral oral posterior nucleus, while limb dystonia and blepharospasm improved with dorsolateral STN stimulation.
  • * Each type of dystonia has distinct neural pathways and connectivity patterns, indicating that tailored stimulation targeting is essential for achieving the best treatment outcomes.
View Article and Find Full Text PDF

Adaptation of the layer V supraspinal motor corticofugal projections from the primary (M1) and premotor (PM) cortices after CNS motor disorders in non-human primates: A survey.

Transl Neurosci

January 2024

Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700 Fribourg, Switzerland.

Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys.

View Article and Find Full Text PDF

Introduction: Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for drug-resistant tremor. The most frequent side effects are ataxia, gait disturbance, paresthesias, dysgeusia, and hemiparesis. Here, we report the first case of thalamic hand dystonia rapidly occurring after MRgFUS thalamotomy of the ventral intermediate nucleus (V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!