How do neurons in orofacial motor cortex (MCtx) orchestrate behaviors? We show that focal activation of MCtx corticobulbar neurons evokes behaviorally relevant concurrent movements of the forelimb, jaw, nose, and vibrissae. The projections from different locations in MCtx form gradients of boutons across premotor nuclei spinal trigeminal pars oralis (SpVO) and interpolaris rostralis (SpVIr). Furthermore, retrograde viral tracing from muscles that control orofacial actions shows that these premotor nuclei segregate their outputs. In the most dramatic case, both SpVO and SpVIr are premotor to forelimb and vibrissa muscles, while only SpVO is premotor to jaw muscles. Functional confirmation of the superimposed control by MCtx was obtained through selective optogenetic activation of corticobulbar neurons on the basis of their preferential projections to SpVO versus SpVIr. We conclude that neighboring projection neurons in orofacial MCtx form parallel pathways to distinct pools of trigeminal premotor neurons that coordinate motor actions into a behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962749 | PMC |
http://dx.doi.org/10.1016/j.neuron.2019.08.032 | DOI Listing |
J Integr Neurosci
December 2024
Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China.
Background: The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear.
Methods: We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD.
Non-sensory thalamic nuclei interact with the cortex through thalamocortical and cortico-basal ganglia-thalamocortical loops. Reciprocal connections between the mediodorsal thalamus (MD) and the prefrontal cortex are particularly important in cognition, while the reciprocal connections of the ventromedial (VM), ventral anterior (VA), and ventrolateral (VL) thalamus with the prefrontal and motor cortex are necessary for sensorimotor information processing. However, limited and often oversimplified understanding of the connectivity of the MD, VA, and VL nuclei in primates have hampered development of accurate models that explain their contribution to cognitive and sensorimotor functions.
View Article and Find Full Text PDFmedRxiv
May 2024
Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
Transl Neurosci
January 2024
Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700 Fribourg, Switzerland.
Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys.
View Article and Find Full Text PDFStereotact Funct Neurosurg
August 2024
Department of Neurology, Geneva University Hospital, Geneva, Switzerland.
Introduction: Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for drug-resistant tremor. The most frequent side effects are ataxia, gait disturbance, paresthesias, dysgeusia, and hemiparesis. Here, we report the first case of thalamic hand dystonia rapidly occurring after MRgFUS thalamotomy of the ventral intermediate nucleus (V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!