Emerging role of mitophagy in cardiovascular physiology and pathology.

Mol Aspects Med

Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Published: February 2020

AI Article Synopsis

  • Healthy mitochondrial function is crucial for tissues with high energy demands, particularly cardiac muscle, where mitochondrial dysfunction is linked to cardiovascular disease.
  • Mitochondrial dynamics involve processes like fission, fusion, biogenesis, and degradation, with mitophagy playing a vital role in clearing defective mitochondria, although it can cause cell damage if misregulated.
  • This text reviews the implications of mitophagy in various heart-related diseases and explores experimental methods and models that help understand its role in conditions like heart failure and diabetic cardiomyopathy.

Article Abstract

Healthy mitochondrial function is imperative for most tissues, but especially those with a high energy demand. Robust evidence linking mitochondrial dysfunction with cardiovascular disease has demonstrated that mitochondrial activity is highly relevant to cardiac muscle performance. Mitochondrial homeostasis is maintained through coordination among the processes that comprise the so-called mitochondrial dynamics machinery. The most-studied elements of cardiac mitochondrial dynamics are mitochondrial fission and fusion, biogenesis and degradation. Selective autophagic removal of mitochondria (mitophagy) is essential for clearing away defective mitochondria but can lead to cell damage and death if not tightly controlled. In cardiovascular cells such as cardiomyocytes and cardiac fibroblasts, mitophagy is involved in metabolic activity, cell differentiation, apoptosis and other physiological processes related to major phenotypic changes. Modulation of mitophagy has detrimental and/or beneficial outcomes in various cardiovascular diseases, suggesting that a deeper understanding of the mechanisms underlying mitochondrial degradation in the heart could provide valuable clinical insights. Here, we discuss current evidence supporting the role of mitophagy in cardiac pathophysiology, with an emphasis on different research models and their interpretations; basic concepts related to this selective autophagy; and the most commonly used experimental approaches for studying this mechanism. Finally, we provide a comprehensive literature analysis on the role of mitophagy in heart failure, ischemia/reperfusion, diabetic cardiomyopathy and other cardiovascular diseases, as well as its potential biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mam.2019.09.006DOI Listing

Publication Analysis

Top Keywords

role mitophagy
12
mitochondrial
8
mitochondrial dynamics
8
cardiovascular diseases
8
mitophagy
6
cardiovascular
5
emerging role
4
mitophagy cardiovascular
4
cardiovascular physiology
4
physiology pathology
4

Similar Publications

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.

Pharmaceuticals (Basel)

January 2025

Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.

View Article and Find Full Text PDF

A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer.

Int J Mol Sci

January 2025

Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus.

Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of , , , , , , and , across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes.

View Article and Find Full Text PDF

Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 Macrophage polarization in bladder cancer.

Int Immunopharmacol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China. Electronic address:

Background: Bladder cancer (BCa), particularly muscle-invasive bladder cancer (MIBC), is associated with poor prognosis, partly because of immune evasion driven by M2 tumor-associated macrophages (TAMs). Understanding the regulatory mechanisms of M2 macrophage polarization via PRKN-mediated mitophagy and histone lactylation (H3K18la) is crucial for improving treatment strategies.

Methods: A single-cell atlas from 46 human BCa samples was constructed to identify macrophage subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!