Chromium (Cr) is commonly added into various metal alloys to improve some mechanical properties such as corrosion resistance, strength, and workability. However, Cr is also known to be a metal allergen for some individuals. Metal allergy is a T cell-mediated disease with symptoms of inflammation and swelling that involve inflammatory cytokines and prostaglandins. Hence, suppressing these inflammation paths by using COX-2 inhibitor might be useful in treating Cr allergy. In this study, mice were used with Cr-induced allergy challenge model. The mice were injected with celecoxib once per day for 7 days one hour after the challenge. Footpad samples were stained with haematoxylin and eosin (H&E), and lymphocytes were isolated from popliteal lymph nodes for the flow cytometric analysis. The results show that both prostaglandin E (PGE), a known mediator of inflammation, and cyclooxygenases (COX)-2 have important roles in the development of Cr allergy. Further, COX-2 inhibitor, celecoxib, was effective in relieving swelling and inflammation in Cr-allergic mice concordant with suppression of IFN-γ production by CD8 T cells and T cell accumulation in the lymph nodes. Therefore, the inhibition of COX-2 may be a therapeutic target for Cr allergy, and additional molecules in the PGE signalling pathway may also be an effective therapeutic target for the treatment of metal allergy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08916934.2019.1662404 | DOI Listing |
Trends Biotechnol
December 2024
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n 46022, Valencia, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Avenida Eduardo Primo Yúfera, 3, 46012, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain.
The demand for novel, minimally invasive, cost-effective, and easily readable diagnostic tools, primarily designed for the longitudinal monitoring of diseases and their treatments, has promoted the development of diagnostic systems that selectively target cells, tissues, or organs, at the same time minimizing their nonspecific accumulation, thus reducing the risk of toxicity and side effects. In this review, we explore the development of renal-clearable systems in non-invasive or minimally invasive detection protocols, all with the objective of minimizing nonspecific accumulation and its associated toxicity effects through quick renal excretion. These probes can identify molecules of interest or different healthy states of the patients through the direct analysis of urine (urinalysis).
View Article and Find Full Text PDFIn Vivo
December 2024
Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Background/aim: Angiogenesis imaging has been a valuable complement to metabolic imaging with 2-deoxy-2-[F]fluoroglucose (FDG). In our longitudinal study, we investigated the tumour heterogeneity and the relationship between FDG and [Ga]Ga-NODAGA-c(RGDfK) (RGD) accumulation in breast cancer xenografts.
Materials And Methods: Two groups of cell lines, a fast-growing (4T1) and a slow-growing cell line (MDA-MB-HER2+), were inoculated into SCID mice.
J Hazard Mater
December 2024
School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China. Electronic address:
The widespread use of copper (Cu) in industrial and agricultural settings leads to the accumulation of excess Cu within aquatic ecosystems, posing a threat to organism health. Microalgal bioremediation has emerged as a popular and promising solution to mitigate the risks. Nevertheless, the genetic underpinnings and engineering tactics involved in heavy metal bioremediation by microalgae remain inadequately elucidated.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Background: Metastasis is the major cause of cancer-related mortality. The premetastatic niche is a promising target for its prevention. However, the generality and cellular dynamics in premetastatic niche formation have remained unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!