Seasonally, bred wild mice provide a unique bioresource, with high genetic diversity that differs from wild-derived mice and laboratory mice. This study aimed to establish an alternative superovulation method using wild large Japanese field mice (Apodemus speciosus) as the model species. Specifically, we investigated how the application of inhibin antiserum and equine chorionic gonadotropin (IASe) during both the reproductive and non-reproductive seasons impact the ovulation rate and competence of embryo development after in vitro fertilization (IVF) with fresh and cryopreserved sperm. When the wild mice were superovulated by injecting eCG followed by human chorionic gonadotropin (hCG), few oocytes were collected during the reproductive and non-reproductive seasons. In comparison, the number of ovulated oocytes was dramatically enhanced by the administration of IASe, followed by isolation of ovulated oocytes 24 hr after 30 IU hCG administration. The IVF oocytes that were in vitro cultured (IVC) with medium containing serum further developed to the 2- and/or 4-cell stage using both fresh and frozen-thawed sperm. In conclusion, we successfully established an alternative protocol for collecting ovulated oocytes from wild large Japanese field mice by administering IASe and hCG during both the reproductive and non-reproductive seasons. This study is the first to develop IVF-IVC wild large Japanese field mice beyond the 2- and/or 4-cell stage in vitro using fresh and cryopreserved sperm. This approach could be used in other species of wild or endangered mice to reduce the number of animals used for experiments, or in maintaining stocks of germ cells or embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.13573DOI Listing

Publication Analysis

Top Keywords

wild large
16
large japanese
16
japanese field
16
field mice
16
reproductive non-reproductive
12
non-reproductive seasons
12
ovulated oocytes
12
mice
9
inhibin antiserum
8
competence embryo
8

Similar Publications

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Coastal lagoons are diverse habitats with significant ecological gradients, which provide crucial ecosystem services but face threats from human activities such as invasive species and pollution. Among the species inhabiting the lagoons, the critically endangered European eel (Anguilla anguilla) is an emblematic species strongly impacted by contamination and parasitism. Several indicators were developed to assess the quality of eel at a large geographic scale.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!