A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental study of the effect of typical halides on pyrolysis of ammonium nitrate using model reconstruction. | LitMetric

The energetic material ammonium nitrate (AN) is used as an industrial raw material; however, it presents a pyrolysis and explosion hazard during transportation and storage, especially when mixed with impurities. To study the effects of typical halides on the thermal decomposition kinetics of AN, a series of precision thermogravimetric analysis experiments at four heating rates were carried out in a nitrogen atmosphere. Based on derivative thermogravimetric analysis, the addition of sodium halides was found to change the kinetic reaction mechanism of AN pyrolysis. The activation energies were obtained using the isoconversional method, and the pre-exponential factor was derived from the kinetic compensation effect. Models of the kinetic reaction mechanism were reliably reconstructed by combining composite kinetic data processing methods, namely, model-free method, model-fitting method, and parameter simulation. A comprehensive analysis showed that the addition of sodium halides shifts the kinetic mechanism of the pyrolysis of AN toward different dominant reaction models (such as reaction order models, power law models, or phase boundary control models) than those of the original reaction model. The results are helpful as a reference and provide guidance for the determination of AN pyrolysis behavior and the simulation of parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121297DOI Listing

Publication Analysis

Top Keywords

typical halides
8
ammonium nitrate
8
thermogravimetric analysis
8
analysis addition
8
addition sodium
8
sodium halides
8
kinetic reaction
8
reaction mechanism
8
mechanism pyrolysis
8
pyrolysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!