Mechanotransduction in cardiovascular morphogenesis and tissue engineering.

Curr Opin Genet Dev

Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.

Published: August 2019

Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2019.08.002DOI Listing

Publication Analysis

Top Keywords

cardiovascular morphogenesis
12
tissue engineering
8
blood flow
8
mechanotransduction cardiovascular
4
morphogenesis tissue
4
engineering cardiovascular
4
morphogenesis involves
4
involves cell
4
cell behavior
4
behavior cell
4

Similar Publications

OTUB2 contributes to vascular calcification in chronic kidney disease via the YAP-mediated transcription of PFKFB3.

Theranostics

January 2025

Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.

Chronic kidney disease (CKD) is a global public health issue, with vascular calcification (VC) being a common and deadly complication. Despite its prevalence, the underlying mechanisms of VC remain unclear. In this study, we aimed to investigate whether and how Otubain-2 (OTUB2) contributes to VC.

View Article and Find Full Text PDF

The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification.

Biomolecules

December 2024

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.

HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process.

View Article and Find Full Text PDF

The Role and Mechanism of Metformin in the Treatment of Nervous System Diseases.

Biomolecules

December 2024

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of Chronobiology, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.

Nervous system diseases represent a significant global burden, affecting approximately 16% of the world's population and leading to disability and mortality. These conditions, encompassing both central nervous system (CNS) and peripheral nervous system (PNS) disorders, have substantial social and economic impacts. Metformin, a guanidine derivative derived from a plant source, exhibits therapeutic properties in various health conditions such as cancer, aging, immune-related disorders, polycystic ovary syndrome, cardiovascular ailments, and more.

View Article and Find Full Text PDF

Matrix interactions regulate epithelial polarity and cohesion in the second heart field.

Dev Cell

January 2025

Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France. Electronic address:

Addition of epithelial progenitor cells drives progressive extension of the heart tube during cardiac morphogenesis. In this issue of Developmental Cell, Arriagada et al. (2024) refine our understanding of how these cells condition and interact with the underlying extracellular matrix, demonstrating that autonomous fibronectin synthesis controls their apicobasal polarity and deployment to the heart.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!