Chronic exposure to multifactorial stress, such as that endured by elite military operators, may lead to overtraining syndrome and negatively impact hormonal regulation. In acute settings (<6 mos), military training has been shown to lead to hormonal dysfunction; however, less is known about the consequences of long-term military training. Thus, the purpose of this study was to determine the chronic effects of military operations and training on the hormone profile of elite military operators. A cross-sectional, random sample of active duty elite US military operators (n = 65, age = 29.8 ± 1.0 yrs, height = 178.4 ± 0.7 cm, weight = 85.1 ± 2.0 kg) concomitantly engaged in rigorous physical training were recruited to participate in the study. Following an overnight fast, waking plasma concentrations of luteinizing hormone, total testosterone (TT), free testosterone, sex-hormone binding globulin, cortisol, thyroid stimulating hormone, triiodothyronine, and thyroxine were obtained. Data were analyzed for correlations and compared against normative reference values. There was a significant positive correlation between TT and cortisol (R = 0.07; P = 0.038). In addition, 43% of the participants (n = 28) had TT below age-based normative reference ranges. These results indicate that long-term military operations and training may place a large burden on the operators and depress or alter the hypothalamic pituitary, adrenal, gonadal, and thyroid axes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2019.108504 | DOI Listing |
Ann Surg Oncol
January 2025
Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Background: Preventative medication (PM) uptake is low among patients at an elevated risk of breast cancer, largely due to fears of intolerance. This study aimed to investigate whether a new, surgical advanced practice provider (APP)-run clinic was effectively prescribing PM. We hypothesized equivalent rates of PM uptake compared to consultation with medical oncologists (MD).
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFArch Med Res
January 2025
Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy.
Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.
View Article and Find Full Text PDFEndocrinology
January 2025
Centre for Cardiovascular and Metabolic Neuroscience; Dept of Neuroscience, Physiology and Pharmacology; University College London; UK.
Obesity is now considered a chronic relapsing progressive disease, associated with increased all-cause mortality that scales with bodyweight, affecting more than 1 billion people worldwide. Excess body fat is strongly associated with excess energy intake, and most successful anti-obesity medications (AOMs) counter this positive energy balance through the suppression of eating to drive weight loss. Historically, AOMs have been characterised by modest weight loss and side effects which are compliance-limiting, and in some cases life-threatening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!