Genetically encoded probes monitoring HO fluctuations in living organisms are key to decipher redox signaling events. Here we use a new probe, roGFP2-Tpx1.C169S, to monitor pre-toxic fluctuations of peroxides in fission yeast, where the concentrations linked to signaling or to toxicity have been established. This probe is able to detect nanomolar fluctuations of intracellular HO caused by extracellular peroxides; expression of human aquaporin 8 channels HO entry into fission yeast decreasing membrane gradients. The probe also detects HO bursts from mitochondria after addition of electron transport chain inhibitors, the extent of probe oxidation being proportional to the mitochondrial activity. The oxidation of this probe is an indicator of steady-state levels of HO in different genetic backgrounds. Metabolic reprogramming during growth in low-glucose media causes probe reduction due to the activation of antioxidant cascades. We demonstrate how peroxiredoxin-based probes can be used to monitor physiological HO fluctuations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778086 | PMC |
http://dx.doi.org/10.1038/s41467-019-12475-0 | DOI Listing |
Mater Futur
March 2025
Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
A term, healthy infant presented with respiratory distress and severe pulmonary hypertension (PH). With an unclear aetiology and the intent to decrease right ventricular afterload, pulmonary vasodilators were initiated. Follow-up imaging revealed a supravalvular mitral ring as the cause of the PH which resolved after surgical resection of the membrane.
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFPflugers Arch
January 2025
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!