TP0463518, a Novel Prolyl Hydroxylase Inhibitor, Specifically Induces Erythropoietin Production in the Liver.

J Pharmacol Exp Ther

Pharmacology Laboratories (S.K., N.O., F.I., N.T., H.K., E.-i.K., S.U., K.Y.) and Drug Safety and Pharmacokinetics Laboratories (H.T.), Taisho Pharmaceutical, Saitama, Japan.

Published: December 2019

Prolyl hydroxylase (PHD) 1/2/3 pan inhibitors are known to potentially induce erythropoietin (EPO) production in both the kidney and liver. The 2-[[1-[[6-(4-chlorophenoxy)pyridin-3-yl]methyl]-4-hydroxy-6-oxo-2,3-dihydropyridine-5-carbonyl]amino]acetic acid (TP0463518) is a novel PHD 1/2/3 pan inhibitor; however, the main source of EPO production after TP0463518 administration remained to be investigated. We examined the effect of TP0463518 in inducing EPO production in the kidney and liver by measuring the hypoxia-inducible factor 2 (HIF-2), EPO mRNA, and serum EPO levels in normal and bilaterally nephrectomized rats. Furthermore, we examined whether liver-derived EPO improved anemia in 5/6 nephrectomized (5/6 Nx) rats. TP0463518 scarcely increased the HIF-2 and EPO mRNA expression levels in the kidney cortex, whereas oral administration of TP0463518 at 40 mg/kg dramatically increased the HIF-2 level from 0.27 to 1.53 fmol/mg and the EPO mRNA expression level by 1300-fold in the livers of healthy rats. After administration of TP0463518 at 20 mg/kg, the total EPO mRNA expression level in the whole liver was 22-fold that in the whole kidney. In bilaterally nephrectomized rats, TP0463518 raised the serum EPO concentration from 0 to 180 pg/ml at 20 mg/kg. Furthermore, repeated administration of TP0463518 at 10 mg/kg increased the reticulocyte count in 5/6 Nx rats on day 7 and raised the hemoglobin level on day 14. The present study revealed that TP0463518 specifically induced EPO production in the liver and improved anemia. The characteristic feature of TP0463518 would lead to not only a more detailed understanding of the PHD-HIF2-EPO pathway in erythropoiesis, but a new therapeutic alternative for renal anemia. SIGNIFICANCE STATEMENT: Prolyl hydroxylase (PHD) 1/2/3 pan inhibitors are known to potentially induce erythropoietin (EPO) production in both the kidney and liver; however, their effects on renal EPO production have been shown to vary depending on the experimental conditions. The authors found that 2-[[1-[[6-(4-chlorophenoxy)pyridin-3-yl]methyl]-4-hydroxy-6-oxo-2,3-dihydropyridine-5-carbonyl]amino]acetic acid (TP0463518), a PHD 1/2/3 pan inhibitor, specifically induced EPO production in the liver and that the liver-derived EPO was pharmacologically effective. Investigation of the effects of TP0463518 may pave the way for the development of a new therapeutic alternative for renal anemia patients.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.119.258731DOI Listing

Publication Analysis

Top Keywords

epo production
28
phd 1/2/3
16
1/2/3 pan
16
epo mrna
16
epo
15
tp0463518
13
prolyl hydroxylase
12
production liver
12
production kidney
12
kidney liver
12

Similar Publications

Fungal specialized metabolites are known for their potent biological activities, among which tropolone sesquiterpenoids (TS) stand out for their diverse bioactivities. Here, we report cytotoxic and proliferation inhibitory effects of the recently discovered TS compounds 4-hydroxyxenovulene B and 4-dihydroxy norpycnidione, and the structurally related 4-hydroxy norxenovulene B and xenovulene B. Inhibition of metabolic activity after TS treatment was observed in Jurkat, PC-3 and FAIK3-5 cells, whereas MDA-MB-231 cells were unresponsive to treatment.

View Article and Find Full Text PDF

Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.

View Article and Find Full Text PDF

Effect of CHO cell line constructed with CMAH gene-directed integration on the recombinant protein expression.

Int J Biol Macromol

December 2024

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China. Electronic address:

Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.

View Article and Find Full Text PDF

Ethylene oxide (EO) is a crucial building block in the chemical industry, and its production via ethylene epoxidation (EPO) is a pivotal process. Silver-based catalysts are known for their high selectivity and are currently largely used in the industrial process. Extensive research over the past 20 years has assumed the oxametallacycle (OMC) as a reaction intermediate, implying that ethylene reacts with adsorbed oxygen on the surface of silver.

View Article and Find Full Text PDF

A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!