Low protein rice (LPR) by-products were used as a source of novel multifunctional cationic peptides. The LPR by-products were separated by ampholyte-free isoelectric focusing (autofocusing) into 20 fractions containing peptides with different isoelectric points (pIs). Subsequently, the antimicrobial activity of each fraction was evaluated against four pathogenic microorganisms. In addition, the cationic peptides from fractions exhibiting antimicrobial activity were purified using reversed-phase high-performance liquid chromatography and identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Of the 11 cationic peptides identified, five peptides with pI values greater than 9.31 and net charges greater than +2 were chemically synthesized for multiple functionalities, including antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. Among these five cationic peptides, only LPR-KRK, which had a net charge of +9, exhibited antimicrobial activity against three of the four pathogenic microorganisms tested. Chromogenic LPS-neutralizing assays using Limulus amebocyte lysate showed that the 50% effective concentrations of these five peptides were between 0.11 and 3.09 μM. Tube-formation assays using human umbilical vein endothelial cells showed that all five peptides exhibited significant angiogenic activity at 1 μM and 10 μM, while none exhibited hemolytic activity toward mammalian red blood cells at concentrations up to 500 μM. Our results demonstrate that these five cationic peptides exhibit multiple biological functionalities with little or no hemolytic activity. Thus, fractions containing cationic peptides obtained from LPR by-products have the potential to be used as dietary supplements and functional ingredients in food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2019.09.009 | DOI Listing |
BMC Ophthalmol
January 2025
Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
Purpose: To assess the clinical efficacy of 0.1% cyclosporine A (CsA) in dry eye patients who have shown inadequate responses to previous treatment with 0.05% CsA.
View Article and Find Full Text PDFNPJ Antimicrob Resist
February 2024
National Heart and Lung Institute, Imperial College London, London, UK.
Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.
View Article and Find Full Text PDFMol Ther
January 2025
Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA. Electronic address:
ACS Nano
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India.
Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!