We investigated the involvement of chemokine receptor type 4 (CXCR4) signaling on the outcome of Brucella (B.) abortus 544 infection in murine macrophages and in a mouse model. CXCR4 manipulation were first evaluated for Brucella invasion and intracellular survival efficiency, mitogen-activated protein kinases (ERK1/2, JNK, p38α) activation and generation of nitric oxide (NO), and then in the splenic bacterial proliferation and cytokine production in BALB/c mice. CXCR4 blockade is involved in the successful control of Brucella invasion, reduction of ERK1/2 phosphorylation and inhibition of nitric oxide release from macrophages. Furthermore, using a reported CXCR4-specific antagonist AMD3100 resulted in splenomegaly but attenuated Brucella proliferation in these organs with elevated serum levels of MCP-1, TNF and IL-12. These findings provide insights on the contribution of CXCR4 signaling in the phagocytic pathway and immune modulation during B. abortus infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2019.108402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!