Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE).

Anal Chim Acta

Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile. Electronic address:

Published: December 2019

This work reports for the first time the use of laminar cork as a sorptive phase in a microextraction technique, rotating-disk sorptive extraction (RDSE). Typical hormones (estrone, estradiol, estriol and ethinyl estradiol) were selected as analyte models and extracted from wastewater samples on laminar cork with statistically equivalent extraction efficiency to that provided by Oasis HLB. The cork characterization was performed by confocal fluorescence microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), allowing the identification of lignin, suberin and polysaccharides (cellulose and hemicellulose) as the main components of the cork. The best conditions for extraction were as follows: rotation velocity of the disk, 2000 rpm; extraction time, 45 min; and sample volume, 20 mL. The analytical features of the developed method show that calibration curves for all analytes have R values higher than 0.99. The absolute recoveries were higher than 63%, and the precision, expressed as relative standard deviation, ranged from 2 to 16%. The LOD and LOQ ranges were 3-19 and 10-62 ng L, respectively. The proposed method was applied to the analysis of wastewater, and the concentrations of hormones in a wastewater treatment plant in Santiago, Chile, ranged from

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.08.069DOI Listing

Publication Analysis

Top Keywords

sorptive phase
8
rotating-disk sorptive
8
sorptive extraction
8
extraction rdse
8
laminar cork
8
cork
5
extraction
5
cork sheet
4
sorptive
4
sheet sorptive
4

Similar Publications

The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.

View Article and Find Full Text PDF

Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices.

Molecules

November 2024

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.

Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.

View Article and Find Full Text PDF

In this work, a miniaturized and sustainable method for the determination of endocrine-disrupting bisphenols in human serum and urine employing the miniaturized stir bar sorptive dispersive microextraction (mSBSDME) approach has been developed. As bisphenols are conjugated in the human body to their glucorinated and sulfated forms, an enzymolysis employing a commercial mixture of β-glucuronidase and arylsulfatase was carried out prior to the microextraction procedure to determine their total content. A magnetic covalent organic framework (COF) was employed as the sorbent to carry out the extraction of the analytes from the biological matrixes, showing good extraction performance due to its hydrophobic, π-π, and dipole-dipole interactions with the analytes.

View Article and Find Full Text PDF

Fate and transport of perfluorooctane sulfonic acid (PFOS) within heterogenous riparian floodplains.

Sci Total Environ

December 2024

Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA; Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA. Electronic address:

Article Synopsis
  • PFAS, particularly PFOS, pose environmental and health risks due to their long-lasting presence, making their fate and transport in sedimentary aquifers complex.
  • The study examines how physical and geochemical differences in riparian floodplains affect the movement and concentration of PFOS during changes in river stages.
  • Findings highlight that sediment permeability is crucial for predicting PFOS behavior, emphasizing the need to accurately assess aquifer variability to understand PFAS dynamics effectively.
View Article and Find Full Text PDF

The coupling of Solid-Phase Microextraction (SPME) technology with gas chromatography (GC) has a well-established and successful history. Traditionally, SPME fibers have been the most popular form thanks to their versatility and the ease with which they can be fully automated. However, alternative geometries for SPME have been developed over the years, beginning with Stir Bar Sorptive Extraction (SBSE) and later evolving into Thin-Film SPME (TF-SPME) devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!