Beta-adrenergic receptor stimulation influences the function of monocytes/macrophages in ayu (Plecoglossus altivelis).

Dev Comp Immunol

State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China. Electronic address:

Published: February 2020

Adrenergic receptors (ARs) are members of the G-protein-coupled receptor superfamily that can be categorized into αARs and βARs. The specific function of ARs in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of ARs from ayu (Plecoglossus altivelis; PaαAR and PaβAR). Sequence comparisons showed that PaαAR was most closely related to the αAR of the Japanese flounder and Nile tilapia, while PaβAR was most closely related to the βAR of Atlantic salmon. The AR transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaαAR and PaβAR proteins were upregulated in MO/MФ after infection, and PaβAR knockdown resulted in a pro-inflammatory status in ayu MO/MФ upon V. anguillarum infection and lowered the phagocytic activity of MO/MФ. Our results indicate that PaβAR plays the role of an anti-inflammatory mediator in the immune response of ayu against bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103513DOI Listing

Publication Analysis

Top Keywords

ayu plecoglossus
8
plecoglossus altivelis
8
paαar paβar
8
paβar
5
beta-adrenergic receptor
4
receptor stimulation
4
stimulation influences
4
influences function
4
function monocytes/macrophages
4
ayu
4

Similar Publications

In semelparous species like the ayu (), spawning is followed by rapid physiological decline and death; yet, the underlying molecular mechanisms remain largely unexplored. This study examines transcriptomic changes in ayu skeletal muscle before and after spawning, with a focus on key genes and pathways contributing to muscle atrophy and metabolic dysfunction. Through RNA sequencing and DEG analysis, we identified over 3000 DEGs, and GSEA and KEGG pathway analysis revealed significant downregulation of energy metabolism and protein degradation.

View Article and Find Full Text PDF

Complete genome sequences of strains isolated from ayu () in the Kagami and Shimanto Rivers, Kochi, Japan.

Microbiol Resour Announc

July 2024

Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi, Japan.

The complete genome sequences of seven strains, isolated from the kidneys of dead ayu () in Kochi's Kagami and Shimanto Rivers, Japan, were determined. Multilocus sequencing typing revealed that their genotypes were sequence-type ST26.

View Article and Find Full Text PDF

Unlabelled: With the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu () infected with , which causes bacterial cold-water disease worldwide.

View Article and Find Full Text PDF

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species.

View Article and Find Full Text PDF

The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C or C PUFA substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!