Objectives: The globally distributed "Beijing" lineage of Mycobacterium tuberculosis has been associated with outbreaks worldwide. Laboratory based studies have suggested that Beijing lineage may have increased fitness; however, it has not been established whether these differences are of epidemiological significance with regards to transmission. Therefore, we undertook a systematic review of epidemiological studies of tuberculosis clustering to compare the transmission dynamics of Beijing lineages versus the non-Beijing lineages.
Methods: We systematically searched Embase and MEDLINE before 31st December 2018, for studies which provided information on the transmission dynamics of the different M. tuberculosis lineages. We included articles that conducted population-based cross-sectional or longitudinal molecular epidemiological studies reporting information about extent of transmission of different lineages. The protocol for this systematic review was prospectively registered with PROSPERO (CDR42018088579).
Results: Of 2855 records identified by the search, 46 were included in the review, containing 42,700 patients from 27 countries. Beijing lineage was the most prevalent and highly clustered strain in 72.4% of the studies and had a higher likelihood of transmission than non-Beijing lineages (OR 1·81 [95% 1·28-2·57], I = 94·0%, τ = 0·59, p < 0·01).
Conclusions: Despite considerable heterogeneity across epidemiological contexts, Beijing lineage appears to be more transmissible than other lineages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinf.2019.09.016 | DOI Listing |
FEBS Open Bio
December 2024
Guangzhou National Laboratory, Guangzhou, China.
Mice are one of the most common biological models for laboratory use. However, wild-type mice are not susceptible to COVID-19 infection due to the low affinity of mouse ACE2, the entry protein for SARS-CoV-2. Although mice with human ACE2 (hACE2) driven by Ace2 promoter reflect its tissue specificity, these animals exhibit low ACE2 expression, potentially limiting their fidelity in mimicking COVID-19 manifestations and their utility in viral studies.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:
Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive.
View Article and Find Full Text PDFFront Public Health
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Objectives: To understand the epidemic characteristics of various SARS-CoV-2 variants, we mainly focus on analyzing general epidemic profiles, viral mutation, and evolution of COVID-19 outbreaks caused by different SARS-CoV-2 variants of concern (VOCs) in China as of August 2022.
Methods: We systematically sorted out the general epidemic profiles of outbreaks caused by various SARS-CoV-2 VOCs in China, compared the differences of outbreaks caused by Delta and Omicron VOCs, and analyzed the mutational changes of subvariants between the same outbreak and different outbreaks.
Findings: By 15 August 2022, a total of 2, 33, and 124 COVID-19 outbreaks caused by Alpha, Delta, and Omicron VOCs, respectively, were reported in different regions of China.
Virus Evol
December 2024
National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
The H9N2 subtype of avian influenza viruses (AIVs) is widely prevalent in poultry and wild birds globally, with occasional transmission to humans. In comparison to other H9N2 lineages, the BJ/94 lineage has raised more public health concerns; however, its evolutionary dynamics and transmission patterns remain poorly understood. In this study, we demonstrate that over three decades (1994-2023), BJ/94 lineage has undergone substantial expansion in its geographical distribution, interspecies transmission, and viral reassortment with other AIV subtypes, increasing associated public health risks.
View Article and Find Full Text PDFPeerJ
December 2024
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
New discoveries of the late Silurian fossil fish (Eugaleaspidae, Eugaleaspiformes, Galeaspida), sp. nov. and sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!