Background And Objectives: Clonidine has been clinically used to treat Tourette's syndrome for decades. There was research finding that clonidine possessed the best risk-benefit ratio, especially for patients associated with attention deficit hyperactivity disorder. CYP2D6 is a significant member of Cytochrome P450 enzymes. The genetic polymorphisms of CYP2D6 greatly affect the clinical effects of drugs even lead to side effects and medical malpractice. Our goal is to research the effect of CYP2D6 genetic polymorphism on the metabolism of clonidine and evaluate the functions of 22 CYP2D6 allelic variants in vitro, which were discovered in Chinese Han population recently.

Methods: This study was carried out through a mature incubation system. The wild-type CYP2D6*1 and 24 variants (CYP2D6*2, CYP2D6*10 and 22 novel CYP2D6 variants) were expressed in insect cells, and the catalytic activity of all the variants were assessed by substrate clonidine. Metabolite 4-OH clonidine was accurately detected via ultra-performance liquid-chromatography tandem mass spectrometry to evaluate the effect of CYP2D6 genetic polymorphism on the clonidine.

Result: Among the 22 novel CYP2D6 variants, the intrinsic clearance (Vmax/Km) of 21 variants were significantly decreased (from 1.53% to 83.25%) compared to the wild-type. In particular, the following seven variants (CYP2D6* 2, CYP2D6* 10, CYP2D6* 93, CYP2D6* 95, E215K, V327 M and R497C) attract more attention, of which the intrinsic clearance decreased more than 70% compared to the wild-type. Because the variants with significantly reduced intrinsic clearance are more likely to cause adverse reactions than the variants with increased or little changed intrinsic clearance. In addition, the related pharmacokinetic parameters of CYP2D6*92 and CYP2D6*96 could not be acquired for the defect of CYP2D6 nucleotide.

Conclusion: We comprehensively evaluated the effect of 22 novel CYP2D6 variants on the metabolism of clonidine for the first time and hoped corresponding data provide a reference for metabolism of clonidine for further studies in vivo, and extend our understanding of the clinical drug toxicity or ineffectiveness by CYP2D6 genetic polymorphism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2019.108840DOI Listing

Publication Analysis

Top Keywords

cyp2d6 variants
16
metabolism clonidine
16
intrinsic clearance
16
cyp2d6 genetic
12
genetic polymorphism
12
novel cyp2d6
12
cyp2d6* cyp2d6*
12
variants
11
cyp2d6
10
clonidine
8

Similar Publications

Ibrutinib treatment is often complicated by cardiovascular side effects (CVSEs). The objective of this retrospective pharmacogenetic study is to replicate a previously reported association of 'high-risk' patients, who are homozygous carriers of at least two of GATA4 rs804280 AA, KCNQ1 rs163182 GG, and KCNQ1 rs2237895 AA, with increased risk of hypertension or atrial fibrillation, and explore associations for other pharmacogenes (e.g.

View Article and Find Full Text PDF

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Objective: Several studies have attempted to identify genetic determinants of clinical response to opioids administered during labor or after cesarean section. However, their results were often contrasting. A systematic review and meta-analysis was conducted to quantitatively assess the association between gene polymorphisms and clinical outcomes of opioid administration in the treatment of labor pain and post-cesarean pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!