Mammalian Mechanoelectrical Transduction: Structure and Function of Force-Gated Ion Channels.

Cell

Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France. Electronic address:

Published: October 2019

The conversion of force into an electrical cellular signal is mediated by the opening of different types of mechanosensitive ion channels (MSCs), including TREK/TRAAK K channels, Piezo1/2, TMEM63/OSCA, and TMC1/2. Mechanoelectrical transduction plays a key role in hearing, balance, touch, and proprioception and is also implicated in the autonomic regulation of blood pressure and breathing. Thus, dysfunction of MSCs is associated with a variety of inherited and acquired disease states. Significant progress has recently been made in identifying these channels, solving their structure, and understanding the gating of both hyperpolarizing and depolarizing MSCs. Besides prototypical activation by membrane tension, additional gating mechanisms involving channel curvature and/or tethered elements are at play.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.08.049DOI Listing

Publication Analysis

Top Keywords

mechanoelectrical transduction
8
ion channels
8
mammalian mechanoelectrical
4
transduction structure
4
structure function
4
function force-gated
4
force-gated ion
4
channels
4
channels conversion
4
conversion force
4

Similar Publications

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner.

View Article and Find Full Text PDF

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF

Human TMC1 and TMC2 are mechanically gated ion channels.

Neuron

December 2024

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China. Electronic address:

Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!