Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, , and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, , and dynamic imaging at super-resolution using STED nanoscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b05914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!