Acid-catalyzed intramolecular vinylogous Mannich reactions and intramolecular Michael reactions affording pyrrolizinone-fused N-heterocycles from hydroxylactam derivatives bearing enals have been developed. Depending on the substituent on the hydroxylactam, the enal moiety acted either as a nucleophile (i.e., as an enol/enolate) or as an electrophile to react with the -acyliminium ion or enamide generated from the hydroxylactam moiety, respectively. The reactions were demonstrated in the construction of fused N-heterocycles with 5- to 8-membered rings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b03210DOI Listing

Publication Analysis

Top Keywords

derivatives bearing
8
bearing enals
8
intramolecular mannich
4
mannich michael
4
michael annulation
4
reactions
4
annulation reactions
4
reactions lactam
4
lactam derivatives
4
enals afford
4

Similar Publications

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.

View Article and Find Full Text PDF

Geopolymerization is a soil improvement technique widely used for waste management in recent years. This study explores the potential of geopolymerization for roadbed improvement using waste materials. Recycled glass powder (RGP) and calcium carbide residue (CCR) were investigated as precursors and alkaline activators, respectively, to enhance the properties of silty sand soil.

View Article and Find Full Text PDF

Discovery of novel benzo[b][1,4]oxazine derivatives as ferroptosis inhibitors.

Bioorg Chem

January 2025

Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Department of Urology and Department of Cancer Center of the Second Affiliated Hospital, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. Electronic address:

Ferroptosis is a novel type of programmed cell death characterized by radical-driven lipid peroxidation accumulation, which is involved in various diseases, including acute organ injury and neurodegenerative disorders. Pharmacological inhibition of ferroptosis is a promising strategy for treating these diseases. In this study, 16 benzo[b][1,4]oxazine derivatives were synthesized and assayed for their antiferroptotic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!