Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications.

Small

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.

Published: April 2020

Inorganic halide perovskite quantum dots (IHPQDs) have recently emerged as a new class of optoelectronic nanomaterials that can outperform the existing hybrid organometallic halide perovskite (OHP), II-VI and III-V groups semiconductor nanocrystals, mainly due to their relatively high stability, excellent photophysical properties, and promising applications in wide-ranging and diverse fields. In particular, IHPQDs have attracted much recent attention in the field of photoelectrochemistry, with the potential to harness their superb optical and charge transport properties as well as spectacular characteristics of quantum confinement effect for opening up new opportunities in next-generation photoelectrochemical (PEC) systems. Over the past few years, numerous efforts have been made to design and prepare IHPQD-based materials for a wide range of applications in photoelectrochemistry, ranging from photocatalytic degradation, photocatalytic CO reduction and PEC sensing, to photovoltaic devices. In this review, the recent advances in the development of IHPQD-based materials are summarized from the standpoint of photoelectrochemistry. The prospects and further developments of IHPQDs in this exciting field are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903398DOI Listing

Publication Analysis

Top Keywords

halide perovskite
12
inorganic halide
8
perovskite quantum
8
quantum dots
8
ihpqd-based materials
8
progress development
4
development inorganic
4
dots photoelectrochemical
4
photoelectrochemical applications
4
applications inorganic
4

Similar Publications

Functionalized Substrates for Reduced Nonradiative Recombination in Metal-Halide Perovskites.

J Phys Chem Lett

January 2025

Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Reducing nonradiative recombination is crucial for minimizing voltage losses in metal-halide perovskite solar cells and achieving high power conversion efficiencies. Photoluminescence spectroscopy on complete or partial perovskite solar cell stacks is often used to quantify and disentangle bulk and interface contributions to nonradiative losses. Accurately determining the intrinsic loss in a perovskite layer is key to analyzing the origins of nonradiative recombination and developing defect engineering strategies.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have attracted significant attention owing to their simple manufacturing process and unique optoelectronic properties. Their reversible electrical or optical property changes in response to oxidizing or reducing environments make them prospective materials for gas detection technologies. Despite advancements in perovskite-based sensor research, the mechanisms behind perovskite-gas interactions, vital for sensor performance, are still inconclusive.

View Article and Find Full Text PDF

A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries.

Nat Commun

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.

The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.

View Article and Find Full Text PDF

Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.

View Article and Find Full Text PDF

The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!