Enteropathogenic Escherichia coli (EPEC) is one of the resistance bacteria towards antibiotics and have been raising problem during treatments. Therefore, a new antibiotic candidate is required. Plantaricin E and F recombinant have been successfully produced by a GRAS host Lactococcus lactis. This study was aimed to evaluate the efficacy and toxicity of plantaricin E and F recombinant against EPEC K1.1 infection by in vivo assay. The production of plantaricin E and F recombinants from Lactococcus lactis was conducted and encapsulated. The in vivo study was carried out by inoculating the mice perorally with EPEC K1.1 for 7 days then treated with 100, 250, and 500 mg/kg body weight/day of recombinant plantaricin E and F for another 7 days. The toxicity assay were observed in ddY mice using various concentrations of treatment (50, 100, 1000, and 5000 mg/kg/body weight) doses perorally for 48 h. The result showed that the plantaricin E and F recombinant were successfully produced in Lactococcus lactis expression host with 3.7 kDa and 3.8 kDa in size. The efficacy study revealed the optimal doses of plantaricin E and F recombinant against EPEC K1.1 infection was 250 mg/kgBW for plantaricin E and 500 mg/kgBW for plantaricin F. The plantarisin E and F recombinant treatment showed improvement in leukocyte, hematocrit, and hemoglobin levels as well in decreasing malondialdehyde (MDA) level. Observation of the intestine histopathology showed small amounts of mononuclear inflammatory cell infiltration than the other groups of treatment. The acute toxicity assay showed that there was no mortality observed during the assay, even after 5000 mg/kg body weight of plantarisin E and F recombinant treatment (LD > 5000 mg/KgBW). The hematological and biochemical observations showed normal levels in leukocytes, erythrocytes, hematocrit, hemoglobin, platelets, urea, creatinine, and alanine transaminase aspartate transaminase (SGOT and SGPT) while histopathological observation shows a picture of normal liver and kidney cells. This study confirmed the application of bacteriocin for further academic and industrial purposes as a non-toxic substance for food preservative and antibiotic candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-019-05096-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!