Background: The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy.
Objectives: This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart.
Methods: Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms.
Results: The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models.
Conclusions: The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jacc.2019.07.076 | DOI Listing |
Int J Mol Sci
December 2024
Reproductive Biology Laboratory, Amsterdam University Medical Center Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Cell Reprogramming and Differentiation Lab, "G. d'Annunzio University" of Chieti-Pescara, 66100 Chieti, Italy.
Regenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.
Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
Preeclampsia (PE) is a complex pregnancy syndrome characterized by hypertension with or without proteinuria, affecting 2-6% of pregnancies globally. PE is characterized by excessive release of damage-associated molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich milieu acts on innate immune cells, inducing a proinflammatory state characterized by elevated cytokines such as IL-1β and IL-18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!