A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol. | LitMetric

Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol.

Carbohydr Polym

Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, 750 North 1200 East, 84322-8700, Logan, UT, USA. Electronic address:

Published: December 2019

Maltodextrin (MD) fatty acid esters (MFAs) have amphiphilic properties and the enzymatic synthesis of these molecules has gained growing interest. Here, MFAs were synthesized in a food-grade ethanol system and the properties of the products were analyzed. A total of 6 different MFAs were produced with 2 different MD sources and 3 combinations of fatty acids (lauric, palmitic, and both) with yields ranging from 72.7 to 83.4%. With an increase in fatty acid carbon length, degree of substitution (0.026 to 0.016) and solubility (100.9% to 93.1%) were significantly decreased. The stability of emulsions formulated with MFAs was investigated and all emulsions formulated were stable except those containing the lowest concentration of MFAs esterified with palmitate. Notably, MD esterified with laurate showed an enhanced emulsion stabilizing ability as compared to commercial emulsifiers. In conclusion, the emulsion stabilizing ability of MFAs may have applications in the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115309DOI Listing

Publication Analysis

Top Keywords

emulsion stabilizing
12
fatty acid
12
maltodextrin fatty
8
emulsions formulated
8
stabilizing ability
8
mfas
6
physical emulsion
4
stabilizing properties
4
properties maltodextrin
4
fatty
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!