Natural extracellular matrices (ECMs) are three-dimensional (3D) and multi-scale hierarchical structure. However, coatings used as ECM-mimicking structures for osteogenesis are typically two-dimensional or single-scaled. Here, we design a distinct quasi-three-dimensional hierarchical topography integrated of density-controlled titania nanodots and nanorods. We find cellular pseudopods preferred to anchor deeply across the distinct 3D topography, dependently of the relative density of nanorods, which promote the osteogenic differentiation of osteoblast but not the viability of fibroblast. The in vivo experimental results further indicate that the new bone formation, the relative bone-implant contact as well as the push-put strength, are significantly enhanced on the 3D hierarchical topography. We also show that the exposures of HFN7.1 and mAb1937 critical functional motifs of fibronectin for cellular anchorage are up-regulated on the 3D hierarchical topography, which might synergistically promote the osteogenesis. Our findings suggest the multi-dimensions and multi-scales as vital characteristic of cell-ECM interactions and as an important design parameter for bone implant coatings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777029 | PMC |
http://dx.doi.org/10.1186/s12951-019-0536-5 | DOI Listing |
Sci Rep
January 2025
Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei blvd. 98, Debrecen, 4012, Hungary.
This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519082, P. R. China.
Int J Biol Macromol
December 2024
College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China. Electronic address:
Scar formation and chronic refractory wounds pose a significant threat to public health, with abnormal immune regulation as a key characteristic. However, topography, a crucial factor influencing immune responses, has not been adequately considered in the design of wound dressings. In this study, we constructed a hierarchical structure on silk fibroin (SF) films by combining soft lithography and femtosecond laser ablation, without altering the intrinsic properties of SF.
View Article and Find Full Text PDFBMC Med
November 2024
Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
Background: The spatial layout of large-scale functional brain networks exhibits considerable inter-individual variability, especially in the association cortex. Research has demonstrated a link between early socioeconomic status (SES) and variations in both brain structure and function, which are further associated with cognitive and mental health outcomes. However, the extent to which SES is associated with individual differences in personalized functional network topography during childhood remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!