In Vitro Skin Permeation Methodology for Over-The-Counter Topical Dermatologic Products.

Ther Innov Regul Sci

US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, Silver Spring, MD, USA.

Published: October 2019

For topically applied over-the-counter (OTC) products, the association of unwanted systemic exposure and adverse events may be difficult to ascertain without a recognition or determination of in vivo absorption. Evaluation of skin permeability using a validated in vitro permeation methodology can provide important information for both initial formulation selection and reformulation during the product life cycle. Additionally, a comparison of permeation rates between formulations using a validated methodology could reduce the number of nonclinical studies needed as part of reformulation. However, many in vitro permeation tests (IVPTs) have produced results with high variability and low reproducibility between study sites. It is unclear if this is due to a lack of a standardized protocol, or lack of control of multiple key experimental factors including skin source, preparation, receptor fluid, and study design. This review presents the authors perspective on the potential regulatory utility of IVPT and proposes steps to improve the accuracy and reproducibility of IVPT. The focus of this review is on topical dermatologic drugs with an initial emphasis on the OTC marketplace where reformulations are more common.

Download full-text PDF

Source
http://dx.doi.org/10.1177/2168479019875338DOI Listing

Publication Analysis

Top Keywords

permeation methodology
8
topical dermatologic
8
vitro permeation
8
vitro skin
4
permeation
4
skin permeation
4
methodology over-the-counter
4
over-the-counter topical
4
dermatologic products
4
products topically
4

Similar Publications

Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.

View Article and Find Full Text PDF

: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!