Here, we describe an innovative Integrated Laser Sensor (ILS) that combines four spectroscopic techniques and two vision systems into a unique, transportable device. The instrument performs Raman and Laser-Induced Fluorescence (LIF) spectroscopy excited at 355 nm and Laser-Induced Breakdown Spectroscopy (LIBS) excited at 1064 nm, and it also detects Laser Scattering (LS) from the target under illumination at 650 nm. The combination of these techniques supplies information about: material change from one scanning point to another, the presence of surface contaminants, and the molecular and elemental composition of top target layers. Switching between the spectroscopic techniques and the laser wavelengths is fully automatic. The instrument is equipped with an autofocus, and it performs scanning with a chosen grid density over an interactively-selected target area. Alternative to the spectroscopic measurements, it is possible to switch the instrument to a high magnification target viewing. The working distances tested until now are between 8.5 and 30 m. The instrument is self-powered and remotely controlled via wireless communication. The ILS has been fully developed at ENEA for security applications, and it was successfully tested in two outdoor campaigns where an automatic recognition of areas containing explosives in traces had been implemented. The strategies for the identification of nitro-compounds placed on various substrates as fingerprints and the results obtained at a working distance of 10 m are discussed in the following.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806108 | PMC |
http://dx.doi.org/10.3390/s19194269 | DOI Listing |
Int J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China. Electronic address:
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.
View Article and Find Full Text PDFJ Environ Manage
January 2025
GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170, Zamudio, Spain.
Current industrial separation and sorting technologies struggle to efficiently identify and classify a large part of Waste of Electric and Electronic Equipment (WEEE) plastics due to their high content of certain additives. In this study, Raman spectroscopy in combination with machine learning methods was assessed to develop classification models that could improve the identification and separation of Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC) and the blend PC/ABS contained in WEEE streams, including black plastics, to increase their recycling rate, and to enhance plastics circularity. Raman spectral analysis was carried out with two lasers of different excitation wavelengths (785 nm and 1064 nm) and varying setting parameters (laser power, integration time, focus distance) with the aim at reducing the fluorescence.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!