Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process.

J Microbiol Biotechnol

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

Published: October 2019

Tuberculosis, which is caused by (Mtb), is among the most pressing worldwide problems. Mtb uniquely interacts with innate immune cells through various pattern recognition receptors. These interactions initiate several inflammatory pathways that play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways have essential roles in numerous host's immune defense responses, the role of TLR signaling in the response to Mtb infection is still unclear. This review presents discussions on host-Mtb interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent discoveries pertaining to these pathways that may help in new immunotherapeutic opportunities.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1908.08057DOI Listing

Publication Analysis

Top Keywords

tlr signaling
16
essential roles
8
latest comprehensive
4
comprehensive knowledge
4
knowledge crosstalk
4
tlr
4
crosstalk tlr
4
signaling
4
signaling mycobacteria
4
mycobacteria antigens
4

Similar Publications

Endosomal toll-like receptors (TLRs) TLR7, TLR8, and TLR9 play an important role in systemic lupus erythematosus (SLE) pathogenesis. The proteolytic processing of these receptors in the endolysosome is required for signaling in response to DNA and single-stranded RNA, respectively. Targeting this proteolytic processing may represent a novel strategy to inhibit TLR-mediated pathogenesis.

View Article and Find Full Text PDF

The absence of efficient on-farm interventions against white spot syndrome viral (WSSV) infections can cause significant economic losses to shrimp farmers. With this exploratory study we aimed to test, both in vitro and in vivo, the efficacy of an organic acid mixture (Aq) against WSSV infections in shrimp. In vitro, using shrimp gut primary cells (SGP), 2% Aq significantly reduced WSSV infection and the amounts of HO released but had no impact on CAT and SOD expression.

View Article and Find Full Text PDF

Yeast cell wall polysaccharides accelerate yet in-feed antibiotic delays intestinal development and maturation via modulating gut microbiome in chickens.

J Anim Sci Biotechnol

January 2025

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.

Background: It is important to promote intestinal development and maturation of chicks for feed digestion and utilization, intestinal health, and disease resistance. This study aimed to investigate the effects of dietary yeast cell wall polysaccharides (YCWP) addition on intestinal development and maturation of chickens and its potential action mechanism.

Methods: 180 one-day-old male Arbor Acres broilers were randomly assigned to three groups containing control (basal diets without any antibiotics or anticoccidial drug), bacitracin methylene disalicylate (BMD)-treated group (50 mg/kg) and YCWP-supplemented group (100 mg/kg).

View Article and Find Full Text PDF

Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged.

View Article and Find Full Text PDF

An essential role for TASL in mouse autoimmune pathogenesis and Toll-like receptor signaling.

Nat Commun

January 2025

Amgen Research, Amgen Inc., 720 Gateway Blvd, South San Francisco, CA, 94080, USA.

TASL is an immune adaptor that binds to the solute carrier SLC15A4 and facilitates activation of the transcription factor IRF5 during Toll-like receptor (TLR) signaling. Similar to IRF5 and SLC15A4, single nucleotide polymorphisms (SNPs) within TASL have been implicated in increased susceptibility to systemic lupus erythematosus (SLE) in patients. However, the biological function of TASL in vivo and how SLE-associated SNPs increase disease risk is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!