Electroencephalographic features of discontinuous activity in anesthetized infants and children.

PLoS One

Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

Published: March 2020

AI Article Synopsis

  • - The study investigates the relationship between discontinuous electroencephalographic (EEG) activity and factors like age and anesthetic depth in children under general anesthesia, particularly focusing on children under 40 months old.
  • - Findings show that younger children and those with higher anesthetic doses experience more discontinuous EEG activity, with specific patterns in frequency and amplitude that change as they age.
  • - The results suggest that discontinuous EEG patterns indicate a younger brain state or deeper anesthesia, potentially impacting how anesthesia affects brain development in children.

Article Abstract

Background: Discontinuous electroencephalographic activity in children is thought to reflect brain inactivation. Discontinuity has been observed in states of pathology, where it is predictive of adverse neurological outcome, as well as under general anesthesia. Though in preterm-infants discontinuity reflects normal brain development, less is known regarding its role in term children, particularly in the setting of general anesthesia. Here, we conduct a post-hoc exploratory analysis to investigate the spectral features of discontinuous activity in children under general anesthesia.

Methods: We previously recorded electroencephalography in children less than forty months of age under general anesthesia (n = 65). We characterized the relationship between age, anesthetic depth, and discontinuous activity, and used multitaper spectral methods to compare the power spectra of subjects with (n = 35) and without (n = 30) discontinuous activity. In the subjects with discontinuous activity, we examined the amplitude and power spectra associated with the discontinuities and analyzed how these variables varied with age.

Results: Cumulative time of discontinuity was associated with increased anesthetic depth and younger age. In particular, age-matched children with discontinuity received higher doses of propofol during induction as compared with children without discontinuity. In the tens of seconds preceding the onset of discontinuous activity, there was a decrease in high-frequency power in children four months and older that could be visually observed with spectrograms. During discontinuous activity, there were distinctive patterns of amplitude, spectral edge, and power in canonical frequency bands that varied with age. Notably, there was a decline in spectral edge in the seconds immediately following each discontinuity.

Conclusion: Discontinuous activity in children reflects a state of a younger or more deeply anesthetized brain, and characteristic features of discontinuous activity evolve with age and may reflect neurodevelopment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776336PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223324PLOS

Publication Analysis

Top Keywords

discontinuous activity
36
features discontinuous
12
activity children
12
general anesthesia
12
discontinuous
10
activity
10
children
9
anesthetic depth
8
power spectra
8
subjects discontinuous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!