Single-cell RNA-Sequencing (scRNA-Seq), an advanced sequencing technique, enables biomedical researchers to characterize cell-specific gene expression profiles. Although studies have adapted machine learning algorithms to cluster different cell populations for scRNA-Seq data, few existing methods have utilized machine learning techniques to investigate functional pathways in classifying heterogeneous cell populations. As genes often work interactively at the pathway level, studying the cellular heterogeneity based on pathways can facilitate the interpretation of biological functions of different cell populations. In this paper, we propose a pathway-based analytic framework using Random Forests (RF) to identify discriminative functional pathways related to cellular heterogeneity as well as to cluster cell populations for scRNA-Seq data. We further propose a novel method to construct gene-gene interactions (GGIs) networks using RF that illustrates important GGIs in differentiating cell populations. The co-occurrence of genes in different discriminative pathways and 'cross-talk' genes connecting those pathways are also illustrated in our networks. Our novel pathway-based framework clusters cell populations, prioritizes important pathways, highlights GGIs and pivotal genes bridging cross-talked pathways, and groups co-functional genes in networks. These features allow biomedical researchers to better understand the functional heterogeneity of different cell populations and to pinpoint important genes driving heterogeneous cellular functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2944865 | DOI Listing |
Circ Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
SAGE Open Med
January 2025
Tufts University School of Medicine, Boston, MA, USA.
Objective: This study utilized a sample of trangender, nonbinary, and gender-diverse (TGD) patients to build on emerging literature that suggests that hypermobile Ehlers-Danlos syndrome may be overrepresented in TGD populations. The objective of this retrospective chart review was to determine the prevalence of hypermobile Ehlers-Danlos syndrome syndrome at a gender-affirming primary care clinic.
Methods: A retrospective chart review of medical records was conducted with records between May 2021 and June 2024.
J Clin Exp Hepatol
December 2024
Stanford University, Palo Alto, CA, United States.
Background: Patients with cirrhosis are susceptible to infections due to abnormalities in humoral and cell-mediated immunity. Fungal infections are associated with delayed diagnosis and high mortality rates, emphasizing the importance of performing fungal cultures and maintaining elevated levels of suspicion in this patient population.
Methods: This retrospective cohort study analyzes cirrhotic patients readmitted with bacterial and fungal infections and investigates outcomes, including in-hospital mortality and hospital resource utilization.
Front Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.
Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!