Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fully-implantable wireless intracortical Brain Machine Interfaces (iBMI) is one of the most promising next frontiers in the nascent field of neurotechnology. However, scaling the number of channels in such systems by another 10× is difficult due to power and bandwidth requirements of the wireless transmitter. One promising solution for that is to include more processing, up to the decoder, in the implant so that transmission data-rate is reduced drastically. Earlier work on neuromorphic decoder chips only showed classification of discrete states. We present results for continuous state decoding using a low-power neuromorphic decoder chip termed Spike-input Extreme Learning Machine (SELMA) that implements a nonlinear decoder without memory and its memory-based version with time-delayed bins, SELMA-bins. We have compared SELMA, SELMA-bins against state-of-the-art Steady-State Kalman Filter (SSKF), a linear decoder with memory, across two different datasets involving a total of 4 non-human primates (NHPs). Results show at least a 10% (20%) or more increase in the fraction of variance accounted for (FVAF) by SELMA (SELMA-bins) over SSKF across the datasets. Estimated energy consumption comparison shows SELMA (SELMA-bins) consuming ≈ 9 nJ/update (23 nJ/update) against SSKF's ≈ 7.4 nJ/update for an iBMI with a 10 degree of freedom control. Thus, SELMA yields better performance against SSKF while consuming energy in the same range as SSKF whereas SELMA-bins performs the best with moderately increased energy consumption, albeit far less than energy required for raw data transmission. This paves the way for reducing transmission data rates in future scaled iBMI systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2019.2944486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!