Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities.

J Colloid Interface Sci

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. Electronic address:

Published: January 2020

The unique antibacterial characteristics of Ag nanomaterials offer a wide potential range of applications, but achieving rapid and durable antibacterial efficacy is challenging. This is because the speed and durability of the antibacterial function make conflicting demands on the structural design: the former requires the direct exposure of Ag to the surrounding environment, whereas the durability requires Ag to be protected from the environment. To overcome this incompatibility, we synthesize sandwich-structured polydopamine shells decorated both internally and externally with Ag nanoparticles, which exhibit prompt and lasting bioactivity in applications. These shells are biocompatible and can be used in vivo to counter bacterial infection caused by methicillin-resistant Staphylococcus aureus superbugs and to inhibit biofilm formation. This work represents a new paradigm for the design of composite materials with enhanced antibacterial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.09.091DOI Listing

Publication Analysis

Top Keywords

enhanced antibacterial
8
antibacterial
5
synthesis sandwich-structured
4
sandwich-structured silver@polydopamine@silver
4
silver@polydopamine@silver shells
4
shells enhanced
4
antibacterial activities
4
activities unique
4
unique antibacterial
4
antibacterial characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!