Glioblastoma (GBM) is one of the most malignant and aggressive primary brain tumor, with a mean life expectancy of less than 15 months. The malignant nature of GBM prompts the need for further research on its tumorigenesis and novel treatments to improve its outcome. One of the promising research targets is autophagy, a fundamental metabolic process of degrading and recycling cellular components. Interventions to activate or inhibit autophagy have both been proposed as GBM therapies, suggesting a controversial, context-dependent role of autophagy in GBM tumorigenesis. In this review, we highlight the molecular links between GBM and autophagy with the focus on the effects of autophagy on the stemness maintenance, metabolism and proteostasis in GBM tumorigenesis. Understanding the molecular pathways involved in autophagy target is critical for GBM therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2019.09.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!