AI Article Synopsis

  • Long-term potentiation (LTP) is crucial for memory and synaptic plasticity, and low-frequency electromagnetic fields (LF-EMFs) like transcranial magnetic stimulation may regulate LTP.
  • This study examined the effects of a 15 Hz/2 mT magnetic field on different types of LTP induced by theta-burst and high-frequency stimulation, finding that TBS-LTP recovers faster than HFS-LTP after LF-EMF exposure.
  • Results suggest that while NMDARs play a role in LTP regulation by LF-EMFs, they are not the sole factor, indicating that various memory processes may respond differently to LF-EMF modulation.

Article Abstract

Long-term potentiation (LTP) is an important aspect of synaptic plasticity and is one of the main mechanisms involved in memory. Low-frequency electromagnetic fields (LF-EMFs) such as transcranial magnetic stimulation are emerging neuromodulation tools for the regulation of LTP. However, whether LF-EMFs have different effects on different types of LTP has not yet been verified. Herein, we studied the regulatory effects of 15 Hz/2 mT sinusoidal magnetic field as pre-magnetic stimulation on several types of LTP, which were induced by theta-burst(TBS) or high-frequency stimulation (HFS) or some combination of them, and applied N-methyl-D-aspartate receptor(NMDAR) antagonists to observe the relationship between the regulation of LTP by LF-EMFs and NMDAR in the Schaffer collateral pathway of rat brain slices in vitro. The results presented in this paper are the performance of TBS and HFS was not exactly the same and the recovery speed of TBS-LTP was faster than HFS-LTP after receiving the regulation of LF-EMFs; moreover, the LTP level was affected by the order of combination and the effect of pre-magnetic stimulation could maintain the entire process of the combined induction experiment, while NMDAR antagonists could not completely offset the influence of LF-EMFs. The memory patterns are diverse, and this study has shown LF-EMFs can regulate LTP such as TBS-LTP and HFS-LTP and can continuously affect multiple LTP induction processes. However, different memory processes may have different performance in the face of LF-EMFs regulation. In terms of the mechanism of LF-EMFs-induced LTP regulation, NMDARs may be involved in the process of LF-EMF regulation of LTP, but are not the only factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2019.146487DOI Listing

Publication Analysis

Top Keywords

regulation ltp
12
ltp
11
ltp induced
8
ltp lf-emfs
8
types ltp
8
pre-magnetic stimulation
8
lf-emfs
7
regulation
6
stimulation
5
effects uninterrupted
4

Similar Publications

OsPAD1, encoding a non-specific lipid transfer protein, is required for rice pollen aperture formation.

Plant Mol Biol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.

Article Synopsis
  • - Plant lipid transfer proteins (LTPs) are crucial for moving lipids between membranes, impacting pollen wall development, including the pollen aperture structure.
  • - The study focuses on a rice mutant called pollen aperture defect 1 (Ospad1), which shows male sterility due to abnormal pollen grain development linked to a non-specific LTP that fails to properly bind lipids.
  • - Researchers found that OsPAD1 interacts with a gene involved in pollen development, providing new insights into how LTPs function in forming pollen apertures, which could have broader implications for other cereal crops.
View Article and Find Full Text PDF

cAMP signalling is critical for memory consolidation and certain forms of long-term potentiation (LTP). Phosphodiesterases (PDEs), enzymes that degrade the second messengers cAMP and cGMP, are highly conserved during evolution and represent a unique set of drug targets, given the involvement of these enzymes in several pathophysiological states including brain disorders. The PDE4 family of cAMP-selective PDEs exert regulatory roles in memory and synaptic plasticity, but the specific roles of distinct PDE4 isoforms in these processes are poorly understood.

View Article and Find Full Text PDF

The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses.

View Article and Find Full Text PDF

Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot.

View Article and Find Full Text PDF

A rich component of Fructus Aurantii, meranzin hydrate, exerts antidepressant effects via suppressing caspase4 to regulate glial cell and neuronal functions in the hippocampus.

Biomed Pharmacother

December 2024

Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China; The Guangdong-Hongkong, Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain, Periphery Homeostasis and Comprehensive Health, Guangzhou 510632, PR China; Zhuhai Institute of Jinan University, Zhuhai 519070, PR China. Electronic address:

Fructus Aurantii, a Chinese herbal medicine, has been indicated to have antidepressant effects in our previous study. However, the main component and specific mechanisms of the antidepressant effects of Fructus Aurantii still need to be further revealed. This study aimed to explore the main antidepressant component of Fructus Aurantii and the underlying mechanisms of its antidepressant effects in the hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!