Self-assembly provides unique routes to create supramolecular nanostructures at well-defined surfaces. In the present work, we employed scanning tunneling microscopy (STM) in combination with electrochemical techniques to explore the adsorption and phase formation of a series of aromatic carboxylic acids (ACAs) at Au(111)/0.1 M HClO. Specific goals are to elucidate the roles of electrochemical potential and directional hydrogen-bonding on the structures and orientation of individual ACAs that form nanoarchitectures. ACAs are prototype materials for supramolecular self-assemblies via stereospecific hydrogen bonds between neighboring molecules. In this study, we mainly focus on a special ACA, terephthalic acid (TPA), which is almost insoluble in water, making the assembly of this molecule from aqueous solution challenging. Depending on the applied electric field, TPA molecules form distinctly different, highly ordered adlayers on Au(111) triggered by directional intermolecular hydrogen bonds. At low electrochemical potentials, TPA molecules are planar oriented, forming a potentially infinite hydrogen-bonded adlayer without any observed domain boundaries. The increase of the electrode potential triggers the deprotonation of one carboxylic acid functional group of TPA; additionally, this is accompanied by an orientation change of molecules from planar to perpendicular. In contrast, structural "defects" and multiple domain boundaries were found at this positively charged surface. The assembled nanostructures of TPA are compared with other ACAs (trimesic acid, benzoic acid, and isophthalic acid), and corresponding adsorption models were built for all molecular adlayers, showing that intermolecular hydrogen-bonding plays a determining role in the formation of two-dimensional ACA nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02130DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
intermolecular hydrogen
8
electrochemical potential
8
tpa molecules
8
molecules planar
8
domain boundaries
8
acid
5
tpa
5
probing molecular
4
nanostructures
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.

View Article and Find Full Text PDF

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!