Cu/Ag Sphere Segment Void Array as Efficient Surface Enhanced Raman Spectroscopy Substrate for Detecting Individual Atmospheric Aerosol.

Anal Chem

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering , Fudan University, Shanghai 200433 , China.

Published: November 2019

Surface enhanced Raman spectroscopy (SERS) shows great promise in studying individual atmospheric aerosol. However, the lack of efficient, stable, uniform, large-array, and low-cost SERS substrates constitutes a major roadblock. Herein, a new SERS substrate is proposed for detecting individual atmospheric aerosol particles. It is based on the sphere segment void (SSV) structure of copper and silver (Cu/Ag) alloy. The SSV structure is prepared by an electrodeposition method and presents a uniform distribution, over large 2 cm arrays and at low cost. The substrate offers a high SERS enhancement factor (due to Ag) combined with lasting stability (due to Cu). The SSV structure of the arrays generates a high density of SERS hotspots (1.3 × 10/cm), making it an excellent substrate for atmospheric aerosol detection. For stimulated sulfate aerosols, the Raman signal is greatly enhanced (>50 times), an order of magnitude more than previously reported substrates for the same purpose. For ambient particles, collected and studied on a heavy haze day, the enhanced Raman signal allows ready observation of morphology and identification of chemical components, such as nitrates and sulfates. This work provides an efficient strategy for developing SERS substrate for detecting individual atmospheric aerosol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02840DOI Listing

Publication Analysis

Top Keywords

atmospheric aerosol
20
individual atmospheric
16
enhanced raman
12
detecting individual
12
ssv structure
12
sphere segment
8
segment void
8
surface enhanced
8
raman spectroscopy
8
substrate detecting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!