AI Article Synopsis

  • Erythropoietin (EPO) is known for its role in producing red blood cells, but it also has various other functions like protecting nerve cells, reducing cell death, fighting oxidative stress, aiding blood vessel formation, and modulating immune responses.
  • EPO works with two types of receptors: the homodimer, which drives red blood cell production, and the heterodimer, linked to its additional protective effects.
  • New drugs that focus on the heterodimer receptor are being developed to improve organ transplant survival without the side effects of increasing red blood cell levels, which can lead to complications.

Article Abstract

Over the past two decades it has emerged that, in addition to erythropoietic activity, erythropoietin (EPO) has numerous other functions, including neuro-protective, anti-apoptotic, antioxidant, angiogenetic and immunomodulatory ones. EPO interacts with two different forms of its receptor (EPOR): a homodimer receptor, responsible for the erythropoietic effects, and a heterodimer receptor, responsible for the non-erythropoietic effects. The effects on the heterodimer receptor are responsible for EPO-induced prolongation of organ transplant survival in mice and humans. The development of new molecules that selectively target the heterodimer EPOR is allowing to test the effect of long-term treatments, without the possible complications related to the increased hematocrit.

Download full-text PDF

Source

Publication Analysis

Top Keywords

receptor responsible
12
erythropoietic effects
8
effects heterodimer
8
heterodimer receptor
8
[non erythropoietic
4
effects
4
effects erythropoietin]
4
erythropoietin] decades
4
decades emerged
4
emerged addition
4

Similar Publications

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.

View Article and Find Full Text PDF

Discovery of ketene/acetyl as a potential receptor for hydrogen-transfer reactions in zeolites.

Nat Commun

January 2025

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China.

Hydrogen-transfer is the primary process responsible for elevating the degree of unsaturation of intermediates in zeolite-catalyzed methanol-to-hydrocarbon reactions, with olefins serving as the typical receptor and alkanes being produced as the by-product. Intriguingly, the introduction of CO was shown to suppress the selectivity of alkanes and enhance the production of aromatics, yet microscopic understanding of this phenomenon remains elusive. Here, based on ab initio molecular dynamics simulations and free energy sampling methods, we discover a non-olefin-induced hydrogen-transfer reaction in the presence of CO, with ketene/acetyl emerging as a more suitable hydrogen-transfer receptor than olefins.

View Article and Find Full Text PDF

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined.

View Article and Find Full Text PDF

Synthesis and biological evaluation of new dual APN/NEP inhibitors as potent analgesics.

Bioorg Chem

January 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China. Electronic address:

An alternative approach for the management of acute and chronic pains involves prolonging the half-life of endogenous opiates, such as enkephalins that are released in response to nociceptive stimuli. This can be achieved through the inhibition of enzymatic pathways responsible for the hydrolysis of these peptides, particularly targeting Aminopeptidase N (APN) and Neutral Endopeptidase (NEP). In this study, we designed and synthesized a series of dual enkephalinase inhibitors (DENKIs) targeting both APN and NEP as novel analgesic treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!