Objectives: A continuous-flow centrifugal blood pump system has been recently developed as an implantable left ventricular assist device for patients with endstage heart failure. The objective of this study was to evaluate the initial in vivo performance of a newly developed left ventricular assist device (iHeart or Istanbul heart; Manufacturing and Automation Research Center, Koc University, Istanbul, Turkey) in an acute setting using a pig model.
Materials And Methods: Three pigs (77, 83, 92 kg) received implants via a median sternotomy, with animals supported for up to 6 hours. An outflow cannula was anastomosed to the ascending aorta. Anticoagulation was applied by intravenous heparin administration. During the support period, pump performance was evaluated under several flow and operating conditions. All pigs were humanely sacrificied after the experiments, and organs were examined macroscopically and histopathologically.
Results: Flow rate ranged between 1.5 and 3.6 L/min with pump speeds of 1500 to 2800 revolutions/min and motor current of 0.6 to 1.3 A. Initial findings confirmed thatthe iHeart ventricular assist device had sufficient hydraulic performance to support the circulation. During the experimental period, plasma free hemoglobin levels were found to be within normalranges.Thrombus formation was not observed inside the pump in all experiments.
Conclusions: The iHeart ventricular assist device demonstrated encouraging hemodynamic performance and good biocompatibility in the pig model for use as an implantable left ventricular assist device. Further acute in vivo studies will evaluate the short-term pump performance prior to chronic studies for long-term evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6002/ect.2019.0110 | DOI Listing |
J Clin Monit Comput
December 2024
Department of Anesthesia and Intensive Care, "Policlinico San Marco" University Hospital, Catania, Italy.
Echocardiography is crucial for evaluating patients at risk of clinical deterioration. Left ventricular ejection fraction (LVEF) and velocity time integral (VTI) aid in diagnosing shock, but bedside calculations can be time-consuming and prone to variability. Artificial intelligence technology shows promise in providing assistance to clinicians performing point-of-care echocardiography.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
3rd Department of Cardiology, "Sotiria" Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Hypertrophic cardiomyopathy (HCM) is a complex and heterogeneous cardiac disorder, often complicated by cardiogenic shock, a life-threatening condition marked by severe cardiac output failure. Managing cardiogenic shock in HCM patients presents unique challenges due to the distinct pathophysiology of the disease, which includes dynamic left ventricular outflow tract obstruction, diastolic dysfunction, and myocardial ischemia. This review discusses current and emerging therapeutic strategies tailored to address the complexities of HCM-associated cardiogenic shock and other diseases with similar pathophysiology that provoke left ventricular outflow tract obstruction.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, 8008 Zurich, Switzerland.
Pediatric patients supported by extracorporeal ventricular assist devices traditionally require long-term stationary inpatient settings. Limited mobility and permanent hospitalization significantly reduce their quality of life. Berlin Heart address this with their novel mobile driving unit, EXCOR Active.
View Article and Find Full Text PDFInt J Artif Organs
December 2024
Penn State College of Medicine, Hershey, PA, USA.
Ventricular assist device (VAD) and cardiac transplant patients experience significant strain on their physical and mental wellbeing postoperatively. Mental health and substance use disorders (MHDs and SUDs) have substantial effects on the quality of life and compliance of transplant and VAD patients. In this study, we compare and characterize MHDs and SUDs between VAD and cardiac allograft patients and transplant list patients with and without VADs.
View Article and Find Full Text PDFHeart Fail Rev
December 2024
Division of Cardiology, Tufts Medical Center, Boston, MA, USA.
Left ventricular assist devices (LVAD) have improved mortality and quality of life for patients with end-stage heart failure by providing an alternative to cardiac transplant or as a bridge to transplantation. The improvement in functional capacity however is minimal to modest depending on the right ventricular function, optimal hemodynamics on LVAD therapy, and comorbidities. There is improvement in submaximal exercise capacity but improvement in peak aerobic capacity is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!