Purpose: Due to a lack of effective early diagnostic measures, new diagnostic methods for bacterial bloodstream infections (BSIs) are urgently needed. A protein-peptide profiling approach can be used to identify novel diagnostic biomarkers of BSIs.

Experimental Design: In this study, MALDI-TOF MS and nano-LC/ESI-MS/MS are used to analyze serum peptides. In addition, GO and network analyses are conducted as a means of analyzing these potential protein markers. Finally, the potential biomarkers are verified in independent clinical samples via ELISA.

Results: m/z 1533.8, 2794.3, 3597.3, 5007.3, and 7816.7 reveal an identical trend; the intensity of m/z 1533.8, 2794.3, and 3597.3 are higher in the infection group relative to controls, whereas the intensity of m/z 5007.3 and 7816.7 are lower in the infection group. Four peaks are successfully identified including ITIH4, KNG1, SAA2, and C3. GO and network analyses find these proteins to form an interaction network, which may be correlated with BSI. ELISA results indicate that ITIH4, KNG1, and SAA2 are effective in differentiating infected from normal control group and the febrile group.

Conclusions And Clinical Relevance: These biomarkers have the potential to offer new insights into the signaling networks underlying the development and progression of BSI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prca.201900075DOI Listing

Publication Analysis

Top Keywords

bacterial bloodstream
8
network analyses
8
m/z 15338
8
15338 27943
8
27943 35973
8
50073 78167
8
intensity m/z
8
infection group
8
itih4 kng1
8
kng1 saa2
8

Similar Publications

Introduction: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients are severely immunocompromised and susceptible to bacterial, viral, and fungal infections. Despite improved anti-microbial prophylaxis and preemptive strategies, bacterial bloodstream infections (BSIs) occur frequently in allo-HSCT recipients and are associated with increased morbidity and mortality. Cytomegalovirus (CMV) and Epstein Barr virus (EBV) are the most relevant viruses following allo-HSCT and remain major concerns.

View Article and Find Full Text PDF

Investigating the time to blood culture positivity: why does it take so long?

J Med Microbiol

January 2025

Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK.

Bloodstream infections (BSIs) are one of the most serious infections investigated by microbiologists. However, the time to detect a BSI fails to meet the rapidity required to inform clinical decisions in real time. Blood culture (BC) is considered the gold standard for diagnosing bloodstream infections.

View Article and Find Full Text PDF

Extraintestinal pathogenic (ExPEC) causes invasive disease (IED), including bacteraemia and (uro)sepsis, resulting in a high disease burden, especially among older adults. This study describes the epidemiology of IED in England (2013-2017) by combining laboratory surveillance and clinical data. A total of 191 612 IED cases were identified.

View Article and Find Full Text PDF

Background: Droplet digital PCR (ddPCR) is a highly sensitive tool for detecting bacterial DNA in bacterial bloodstream infections (BSI). This study aimed to examine the sensitivity and specificity of ddPCR and the association between bacterial DNA load in whole blood and the time-to-positivity (TTP) of blood culture (BC) in patients with Escherichia coli BSI.

Methods: This prospective study enrolled patients with E.

View Article and Find Full Text PDF

YafN-YafO toxin-antitoxin system contributes to stress resistance and virulence of avian pathogenic Escherichia coli.

Poult Sci

January 2025

Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!