A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Association between environmental quality and diabetes in the USA. | LitMetric

Association between environmental quality and diabetes in the USA.

J Diabetes Investig

Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, USA.

Published: March 2020

Aims/introduction: Caloric excess and physical inactivity fail to fully account for the rise of diabetes prevalence. Individual environmental pollutants can disrupt glucose homeostasis and promote metabolic dysfunction. However, the impact of cumulative exposures on diabetes risk is unknown.

Materials And Methods: The Environmental Quality Index, a county-level index composed of five domains, was developed to capture the multifactorial ambient environmental exposures. The Environmental Quality Index was linked to county-level annual age-adjusted population-based estimates of diabetes prevalence rates. Prevalence differences (PD, annual difference per 100,000 persons) and 95% confidence intervals (CI) were estimated using random intercept mixed effects linear regression models. Associations were assessed for overall environmental quality and domain-specific indices, and all analyses were stratified by four rural-urban strata.

Results: Comparing counties in the highest quintile/poorest environmental quality to those in the lowest quintile/best environmental quality, counties with poor environmental quality demonstrated lower total diabetes prevalence rates. Associations varied by rural-urban strata; overall better environmental quality was associated with lower total diabetes prevalence rates in the less urbanized and thinly populated strata. When considering all counties, good sociodemographic environments were associated with lower total diabetes prevalence rates (prevalence difference 2.77, 95% confidence interval 2.71-2.83), suggesting that counties with poor sociodemographic environments have an annual prevalence rate 2.77 per 100,000 persons higher than counties with good sociodemographic environments.

Conclusions: Increasing attention has focused on environmental exposures as contributors to diabetes pathogenesis, and the present findings suggest that comprehensive approaches to diabetes prevention must include interventions to improve environmental quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078099PMC
http://dx.doi.org/10.1111/jdi.13152DOI Listing

Publication Analysis

Top Keywords

environmental quality
36
diabetes prevalence
20
prevalence rates
16
lower total
12
total diabetes
12
environmental
11
quality
9
diabetes
9
prevalence
8
environmental exposures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!