Background: Dengue infection represents a global health issue of growing importance. Dengue non-structural protein 1 (NS1) plays a central role in the early detection of the disease. The most common method for NS1 detection is testing by lateral flow immunoassays (LFIAs) with varying sensitivity. In this study, we present a highly sensitive magneto-enzyme LFIA for prompt diagnosis of dengue.
Methods: We have demonstrated the development of a magneto-enzyme LFIA combining super-paramagnetic nanoparticles as labels and Biotin-Streptavidin signal amplification strategy to detect dengue NS1. Factors affecting the test performance including antibody pair, super-paramagnetic nanoparticle size, nitrocellulose membrane type, amounts of detection and capture antibodies, and amounts of Streptavidin-polyHRP were optimized. Analytical sensitivity and cross-reactivity were determined. Clinical performance of the novel assay was evaluated using a panel of 120 clinical sera.
Results: This newly developed assay could detect NS1 of all four serotypes of dengue virus (DENV). The limit of detection (LOD) was found to be as low as 0.25 ng ml for DENV-1 and DENV-3, 0.1 ng ml for DENV-2, and 1.0 ng ml for DENV-4. The LOD for DENV-2 was a 50-fold improvement over the best values previously reported. There was an absence of cross-reactivity with Zika NS1, Hepatitis B virus, Hepatitis C virus, and Japanese encephalitis virus. The sensitivity and specificity of the novel assay were 100% when tested on clinical samples.
Conclusions: We have successfully developed a magneto-enzyme LFIA, allowing rapid and highly sensitive detection of dengue NS1, which is essential for proper management of patients infected with DENV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765353 | PMC |
http://dx.doi.org/10.7717/peerj.7779 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.
View Article and Find Full Text PDFJ Patient Rep Outcomes
January 2025
Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
Background: Patient Reported Outcomes Measurement Information System Fatigue Short-Form (PROMIS-F-SF) is a self-administered, patient reported outcome (PRO) designed to assess fatigue in healthy and clinical populations and for tracking progress during treatment for disorders complicated with fatigue.
Methods: Patients in the Mental Health Service Outpatient Clinics and healthy volunteers were invited to complete a survey, which included the Danish translation of the PROMIS-F-SF, the Chalder Fatigue Scale (CFS-11), and measures of depression and anxiety. We conducted a confirmatory factor analysis of the previously suggested single-factor structure of the instrument.
Naturwissenschaften
January 2025
LESTES, Entomology and Experimental Biology Center, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!